Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 8 - 8
1 Oct 2014
Leong J Curtis M Carter E Cowan J Lehovsky J
Full Access

There is a wide range of reports on the prevalence of neurological injuries during scoliosis surgery, however this should depend on the subtypes and severity of the deformity. Furthermore, anterior versus posterior corrections pose different stresses to the spine, further quantifications of neurological risks are presented.

Neuromonitoring data was prospectively entered, and the database between 2006 and 2012 was interrogated. All deformity cases under the age of 21 were included. Tumour, fracture, infection and revision cases were excluded.

All “red alerts” were identified and detailed examinations of the neuromonitoring records, clinical notes and radiographs were made. Diagnosis, deformity severity and operative details were recorded.

2290 deformity operations were performed: 2068 scoliosis (1636 idiopathic, 204 neuromuscular, 216 syndromic, and 12 others), 89 kyphosis, 54 growing rod procedures, and 80 operations for hemivertebra. 696 anterior and 1363 posterior operations were performed for scoliosis (8 not recorded), and 38 anterior and 51 posterior kyphosis correction.

67 “red alerts” were identified, there were 14 transient and 6 permanent neurological injuries. 62 were during posterior stage (24 idiopathic, 21 neuromuscular, 15 syndromic (2 kyphosis), 1 growing rod procedure, 1 haemivertebra), and 5 were during anterior stage (4 idiopathic scoliosis and 1 syndromic kyphosis). Average Cobb angle was 88°. 1 permanent injuries were during correction for kyphosis, and 5 were for scoliosis (4 syndromic, 1 neuromuscular, and 1 anterior idiopathic).

Common reactions after “red alerts” were surgical pause with anaesthetic interventions (n=39) and the Stagnara wake-up test (n=22). Metalwork was partially removed in 20, revised in 12 and completely removed in 9. 13 procedures were abandoned.

The overall risk of permanent neurological injuries was 0.2%, the highest risk groups were posterior corrections for kyphosis and scoliosis associated with a syndrome. 4% of all posterior deformity corrections had “red alerts”, and 0.3% resulted in permanent injuries; compared to 0.6% “red alerts” and 0.3% permanent injuries for anterior surgery. The overall risk for idiopathic scoliosis was 0.06%.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 496 - 497
1 Aug 2008
Mohan A Ramesh P Curtis M
Full Access

Introduction: There are no guidelines for the use of any particular tourniquet in foot surgery. We undertook this prospective randomised study to assess the efficacy of the S-MART TM tourniquet in foot surgery as compared to the pneumatic tourniquet. A literature review confirms this is the first randomised controlled study objectively measuring the outcomes of this tourniquet system.

Material and Methods: We included 40 consecutive patients who had foot surgery from May 2006 to August 2006. Informed consent with local medical ethics committee approval was obtained. We excluded patients with history of diabetes mellitus, deep vein thrombosis, fractures, limb circumference more than 40 centimetres and smokers. The ease of application of tourniquet, intraoperative bloodless field and ease of removal was scored on a scale of 1–10. Patients were followed up at 2 weeks.

Results: 20 patients were randomised into group one with pneumatic tourniquet (average age 63.36) and 20 patients in group two with S-MART TM tourniquet (average age 61.25). The average tourniquet placement time in-group one was 144.36 seconds as compared to 12 seconds ingroup two. The mean ease of application scores was 4.27 in-group one as compared to 1.46 in-group two. Total tourniquet time was more in-group one. Intraoperative haemostasis was rated higher in-group two.

Discussion: SMART TM tourniquet provides a good intraoperative haemostasis and is easy to apply. This tourniquet helps to exsanguinate; this frees up theatre personnel, saves resources and decreases tourniquet time for surgery.

The limitation is it cannot be reinflated and cannot be used in patients with fractures.

Conclusion: S-MART tourniquet is a good for foot surgery, provides a good operative field, is easy to apply and saves precious theatre time and resources.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 353 - 353
1 Jul 2008
Soler Fernandez JA Gidwani S Dinah F Curtis M
Full Access

Shoulder rotator cuff tears can be very debilitating and painful. Whilst massive tears may defy attempts at surgical repair due to the size of the defect, various biological materials have been proposed to reinforce tenuous repairs; initial results have been promising. It has been suggested that these materials may be used to bridge defects in the rotator cuff as a ‘patch’ or ‘interposition implant’ to provide pain relief and even offer some hope of functional recovery. A porcine dermal collagen implant (Permacol ©) has been engineered and introduced for the repair and reconstruction of soft tissues in the human body. In orthopaedics, it has been successfully used in the reinforcement and augmentation of rotator cuff repairs by suturing it over the repaired tendon. Proper et al reported good short term results in using this implant to bridge defects in massive rotator cuff tears and suggested it was good solution for this group of patients, reporting improvement in all aspects of the Constant Score. We have used Permacol © to reinforce cuff repairs with satisfactory results and thus considered its use as a salvage procedure to bridge massive rotator cuff defects, both of traumatic and degenerate origins. Unfortunately, we have seen with great concern that our results have been less than satisfactory. In a cohort of 20 patients who underwent Permacol © interposition / rotator cuff repair, 4 of these have failed, despite a promising initial recovery phase with good pain relief. We believe that use of this and similar implants to bridge a defect in the cuff is not indicated; MRI and dynamic ultrasound examination showed an inflammatory response in the shoulder, and resulting weakness/failure of the implant. We present clinical, radiographic, and histological findings of our experience and a discussion as to the probable cause for the failure of this implant in this particular group of patients.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 254 - 254
1 Mar 2004
Acton D Trikha S O’Reilly M Curtis M Bell J
Full Access

Aims: Acute lateral dislocation of the patella has been associated with disruption of the medial restraints of the patella and following non-operative management, a redislocation rate of up to 44%. Methods: Ten patients who presented to the Accident and Emergency dept. following acute patella dislocation had an ultrasound scan (USS) performed by an experienced musculoskel-etal radiologist. Each patient had an arthroscopy and washout of the knee and repair of ruptured structures. The ultrasound reports have now been compared to the surgical findings to determine the effectiveness of this investigation. Results: The ultrasound scans identified deficiencies in the ligamentous attachments to the medial border of the patella in eight patients and these were confirmed at operation in the same eight. The USS diagnosis of haematoma or torn fibres in the vastus medialis obliquus (VMO) (5 patients) corresponded with tearing of this muscle at operation; however the degree of muscle injury was underestimated in two. The USS finding of free fluid around the medial collateral ligament (MCL) at the adductor tubercle in three patients was associated with the operative finding of disruption of the femoral origin of the medial patellofemoral ligament (MPFL). Haematomata detected on USS along the adductor longus in two patients proved to have disruption of the VMO attachment. Conclusions: We recommend the use of ultrasound for assessment of all patella dislocations to accurately locate tears of the retinaculum and help clinicians to understand the severity of injury to the soft tissue restraints of the patella.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_II | Pages 163 - 163
1 Feb 2003
Trikha S Acton D O’Reilly M Curtis M Bell J
Full Access

Acute lateral dislocation of the patella has been associated with disruption of the medial restraints of the patella. Following non-operative management there is a redislocation rate of up to 44%. This is an observational study testing whether sonography is a reliable method of assessing the medial retinaculum after acute dislocation of the patella.

Ten patients following acute patellar dislocation had an ultrasound scan (USS) performed by an experienced musculoskeletal radiologist. Each patient subsequently had an examination under anaesthetic, arthroscopy, and repair of the ruptured structures. The ultrasound reports were compared to the surgical findings to determine the accuracy of this investigation.

USS located deficiencies in the ligamentous attachments to the medial border of the patella and the presence of avulsed bony fragments, all of which were confirmed at operation. The sonographic diagnosis of haematoma or torn fibres in the vastus medialis obliquus corresponded with our operative findings.

The most significant findings were the correlation of free fluid around the medial collateral ligament (MCL) with avulsion of the femoral attachment of the medial patellofemoral ligament (MPFL) and the presence of avulsed fragments of bone from the medial border of the patella.

Sonography, in cadaveric studies consistently identifies the retinacula and like MRI offers a distinctive constellation of findings that can be used in diagnosis and therefore play a significant role in directing surgical management of these patients. We have found Sonography to be readily available and accurate.

This report does not include surgical outcome since the follow up is short and incomplete. We do, however, feel that ultrasound shows the state of the soft tissue restraints of the patella following lateral dislocation.