Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 132 - 132
1 May 2016
Pierrepont J Feyen H Baré J Young D Miles B Shimmin A
Full Access

Introduction

Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading.

Methodology

Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard medical imaging to produce a patient-specific rigid body dynamics analysis of the subject performing a sit-to-stand task and a step-up with the contralateral leg, Fig 1. The software calculates the dynamic force at the replaced hip throughout the two activities and plots the bearing contact patch, using a Hertzian contact algorithm, as it traces across the articulating surface, Fig 2. As all the squeaking hips did so during deep flexion, the minimum posterior Contact Patch to Rim Distance (CPRD) can then be determined by calculating the smallest distance between the edge of the contact patch and the true rim of the ceramic liner, Fig 2. A negative posterior CPRD indicates posterior edge-loading.