Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 48 - 48
1 Feb 2020
Jones H Foley E Garrett K Noble P
Full Access

Introduction

Corrosion products from modular taper junctions are a potent source of adverse tissue reactions after THR. In an attempt to increase the area of contact and resistance to interface motion in the face of taper mismatches, neck trunnions are often fabricated with threaded surfaces designed to deform upon assembly. However, this may lead to incomplete contact and misalignment of the head on the trunnion, depending upon the geometry and composition of the mating components. In this study we characterized the effect of different femoral head materials on the strength and area of contact of modular taper constructs formed with TiAlV trunnions.

Materials and Methods

Three groups of 36mm femoral heads (CoCr, Biolox ceramic; Oxinium) and matching Ti-6Al-4V rods with 12/14 trunnions were selected for use in this study. The surface of each trunnion was coated with a 20nm layer of gold applied by sputter-coating in vacuo. Each head/trunnion pair was placed in an alignment jig and assembled with a peak axial impaction force of 2000N using a drop tower apparatus. After assembly, each taper was disassembled in a custom apparatus mounted in a mechanical testing machine (Bionix. MTS. After separation of the components, the surface of each trunnion was examined with backscattered electron microscopy to reveal the area of disruption of the original gold-coated surface. Images encompassing the entire surface of the trunnion were collected and quantified by image processing.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 59 - 59
1 Mar 2017
Noble P Foley E Simpson J Gold J Choi J Ismaily S Mathis K Incavo S
Full Access

Introduction

Numerous factors have been hypothesized as contributing to mechanically-assisted corrosion at the head-neck junction of total hip prostheses. While variables attributable to the implant and the patient are amenable to investigation, parameters describing assembly of the component parts can be difficult to determine. Nonetheless, increasing evidence suggests that the manner of intraoperative assembly of modular components plays a critical role in the fretting and corrosion of modular implants. This study was undertaken to measure the magnitude and direction of the impaction forces applied by surgeons in assembling modular head-neck junctions under operative conditions where both the access and visibility of the prosthesis may potentially compromise component fixation.

Methods

A surrogate consisting of the lower limb with overlying soft tissue was developed to simulate THR performed via a 10cm incision using the posterior approach. The surrogate was modified to match the resistance of the body to retraction of the incision, mobilization of the femur and hammering of the implanted femoral component. An instrumented femoral stem (SL PLUS) was surgically implanted into the bone after attachment of 3 miniature accelerometers (Dytran Inc) in an orthogonal array to the proximal surface of the prosthesis. A 32mm cobalt chrome femoral head was mounted on the trunnion (12/14 taper, machined) of the femoral stem. 15 Board-certified and trainee surgeons replicated their surgical technique in exposing the femur and impacting the modular head on the tapered trunnion. Impaction was performed using an instrumented hammer (5000 Lbf Dytran impact hammer) that provided measurements of the magnitude and temporal variation of the impact force. The components of force acting along the axis aof the neck and in the AP and ML directions were continuously samples using the accelerometers.