These findings can explain why injury involving the P.S.L.C. in the adult has a worse prognosis for rehabilitation.
The anterolateral mini incision is a new innovative approach using the intramuscular plan between the gluteus medius and the tensor fascia lata. This intermuscular interval through a small incision provides good exposure and preserves muscle integrity. Moreover, preserving the muscle integrity provides a very stable joint after implantation such that no restrictions is giving to the patient during the rehabilitation period.
The joint space, coronal and sagittal meniscal thickness, extrusion in 4 directions, meniscal angles, intermeniscal space and evaluation of menisci, ligaments and marrow were compared between positions in the OA and control groups. Correlation with medial knee pain was obtained.
In OA the meniscal angle was larger when upright, without statistical significance. The medial, lateral and anterior meniscal extrusion were greater in OA on vertical and supine, especially the anterior extrusion of medial meniscus which was significantly higher in OA (p= 0.0259, 0.0122, vertical, supine, respectively( and on vertical position (p= 0.0041). Medial extrusion was higher in OA on both positions (p= 0.0228, 0.0184 vertical , supine). Medial meniscal tears were seen in 6/10 OA and 2/6 controls. MCL grade 1 sprain pattern was seen in 4/10 OA, chronic ACL tear was seen in 5, and subchondral marrow edema in 8/10. 7/10 OA patients complained of knee pain which was predominantly medial.
Osteoarthritis (OA) is associated with biochemical and mechanical processes that release different wear particles into the synovial fluid. Unfortunately, symptoms such as pain, swelling and limited range of motion often do not correlate with the level of OA as observed by X-ray. In addition, the mechanisms of OA and the processes involved are still not clearly understood. Therefore, there is much interest in developing new diagnostic techniques that would provide means to both sensitive, objective determination of joint damage and studying the underlying mechanisms. Such a technique may also aid in evaluating the efficiency of drugs under development objectively and relatively quickly. Bio-ferrography (BF) is a method for magnetic isolation of target cells or particles in a fluid. The current project was aimed at evaluating the applicability of BF for isolation and analysis of specific wear particles in human joints. Synovial fluid aspirates were drawn during either arthroscopy or total joint replacement from 14 patients with either OA or other types of chondropathy. Target components of bone and cartilage (collagen type I and type II, respectively) were labeled with monoclonal antibodies coupled to magnetic beads. The captured particles were isolated on microscope slides by means of BF and characterized by several optical and scanning electron microscopy techniques combined with chemical analysis. The number, size and shape of particles were quantified by image analysis. Results showed that specific labeling of target collagens enables capture of a much higher number of particles in comparison to previous reports. A variety of particles with different morphologies and sizes were documented. The number of captured particles changed in different patients. In addition to bone and cartilage fragments, particles of repaired cartilage that contained collagen I, meniscus particles containing collagens I and II, and magnesium-rich particles that could form during biochemical dissolution of hydroxyapatite or precipitation from body fluids, were identified. Further in-depth characterization of these particles would shade more light on the mechanisms and processes involved in joint degradation. The evaluation of joint damage by BF was found to correlate with clinical observations. It was concluded that BF has the potential of becoming a powerful tool in the study of human joint diseases. Future studies may use even more specific labeling of joint components. BF may become a routine diagnostic technique, aiding the orthopedist in determination of OA level in an objective manner. The ability to draw samples quickly during arthroscopy with little discomfort to the patient could facilitate routine serial assessment of particular joints.
A total of 1566 injections were performed involving 522 knees. Patients were divided into two groups; one consisting of 277 patients who purchased Orthovisc® and a second consisting of 245 patients who purchased Synvisc®. A Visual Analog Scale (VAS) assessed pain. The senior author performed all injections and sterile injection protocol was strictly adhered to. Knees were injected at weekly intervals for 3 weeks. Patients were assessed at baseline, 1, 2, 3 &
4 weeks and 3, 6 &
12 months following initial visit.
Bio-ferrography (BF) is a method for magnetic isolation of particles suspended in liquid on a glass slide. The objective of the current research was to evaluate the potential use of BF in determining the wear level of artificial hip and knee joints based on analysis of aspirated synovial fluids. Synovial fluid aspirates and prosthesis compartments removed by revision surgery from 14 patients were analyzed. The synovial fluid was centrifuged to separate the wear particles from the hyaluronic acid. The failed prostheses were washed in the lab with either saline or distilled water to remove and capture unbound wear particles. An erbium chloride (ErCl3) solution was added in some cases to induce increased magnetization. The wear particles were isolated by means of a Bio-Ferrograph 2100 system, and characterized by means of several optical and scanning electron microscopy techniques as well as energy dispersive spectroscopy. The number and size of particles were quantified by image analysis. The failed prostheses were also characterized in order to determine whether BF can monitor the wear of artificial joints. Results showed that metallic (namely, Ti-, Co- and Fe-based alloys), polymeric (namely, UHMWPE, POM and PMMA) and bone particles could be isolated on slides by BF. The isolated particles exhibited a variety of shapes and surface morphologies that were dependent on the process by which they had been formed. No other technique allows retrieval and isolation of so many tiny particles, either metallic or non-metallic, while preserving their shape for microscopic examination and chemical analysis. A correlation existed between the level of prosthesis degradation, as inspected during failure analysis, and the number and size of isolated particles; namely, an increase in number and size of particles represented increased prosthesis wear. When the prosthesis was visually in good condition, very few small particles were retrieved from the synovial fluid. The formation of metal and bone particles in several cases accelerated further wear of these prostheses. On the basis of the good correlation between the classification of damage by BF and the level of artificial joint degradation as evaluated during failure analysis, it was concluded that BF of synovial fluids may be used in the study of artificial joints failure. In addition to monitoring the level of wear, it allows determination of the mechanism and cause of failure, thus providing feedback on problems associated with design, manufacturing and installation of artificial joints. The ability to draw samples quickly during joint aspiration with little discomfort to the patient could facilitate periodic ferrographic evaluation of specific joints. Such information may also prove invaluable in the design of improved prostheses. In these cases, the atlas of wear particles that was constructed in this project for the first time may be used as a reference.
In the study group only 1 patient needed prolonged high dose anticoagulant treatment while 6 patients in the enoxaparin group were treated (p=0.020). The cumulative incidence of adverse events in the study group was significantly lower than that observed in the control group (p=0.000). Average postoperative hospital stay was 8.4 days in the study group and 11.7 days in the control group (p=0.002). The CECT device was very well tolerated by the patients and facilitated early mobilization.
A fifth control group did not receive any implant. Animals were followed for 3 months after transplantation and than sacrificed. The histological specimens were evaluated by image analysis after immuno-histochemical stains were performed (including the following antigens – collagen type II, collagen type I, collagen type III, collagen type X, S-100, alkaline phosphatase, osteocalcin, osteopontin, nitric oxide synthase).