Short-stem total hip arthroplasty (THA) may have bone sparing properties, which could be advantageous in a younger population with high risk of future revision surgery. We used data from the AOANJRR, LROI and SAR to compare survival rates of primary THA, stems used in the first-time revision procedures as well as the overall survival of first-time revisions between a cohort of short-stem and standard-stem THA. Short-stem THAs (designed as a short stem with mainly metaphyseal fixation) between 2007 and 2021 were identified (n=16,258). A propensity score matched cohort (1:2) with standard THAs in each register was identified (n=32,515). The cohorts were merged into a research dataset. Overall survival at 12 years follow-up was calculated using Kaplan-Meier survival analyses. Stem revisions (short-stem THA n=239, standard-stem THA n=352) were identified. The type of revision stem was classified as standard (<160 mm) or long (>160 mm). The survival rate of all first-time revisions in the two groups was calculated using any type of revision as outcome. The 12 year- overall survival rate (all revisions, all causes) for primary short-stem THAs was 95.3% (CI 94.5–95.9%), which was comparable to 95.2% (CI 94.7–95.7%) for standard-stem THAs. In the short-stem THA group, a standard stem (<160 mm) was more often (59%) used in the first-time revision than in the standard-stem group (47%, p=0.004). The overall survival of the first-time revisions did not differ between cases primarily operated with a short or a standard stem. In our multi-national register study, the overall survival rate of short stems was similar to that of standard stems. In short stem revisions there was a higher likelihood of using a standard-length stem for the revision compared with first-time revisions of standard stems. This finding might indicate bone-sparing properties with short-stemmed THAs.
Although data on uncemented short stems are available, studies on cemented short-stemmed THAs are limited. These cemented short stems may have inferior long-term outcomes and higher femoral component fracture rates. Hence, we examined the long-term follow-up of cemented short Exeter stems used in primary THA. Within the Exeter stem range, 7 stems have a stem length of 125 mm or less. These stems are often used in small patients, in young patients with a narrow femoral canal or patients with anatomical abnormalities. Based on our local database, we included 394 consecutive cemented stems used in primary THA (n=333 patients) with a stem length ≤125 mm implanted in our tertiary referral center between 1993 and December 2021. We used the Dutch Arthroplasty Registry (LROI) to complete and cross-check the data. Kaplan-Meier survival analyses were performed to determine 20-year survival rates with stem revision for any reason, for septic loosening, for aseptic loosening and for femoral component fracture as endpoints. The proportion of male patients was 21% (n=83). Median age at surgery was 42 years (interquartile range: 30–55). The main indication for primary THA was childhood hip diseases (51%). The 20-year stem survival rate of the short stem was 85.4% (95% CI: 73.9–92.0) for revision for any reason and 96.2% (95%CI: 90.5–98.5) for revision for septic loosening. No stems were revised for aseptic femoral loosening. However, there were 4 stem fractures at 6.6, 11.6, 16.5 and 18.2 years of follow-up. The stem survival with femoral component fracture as endpoint was 92.7% (CI: 78.5–97.6) at 20 years. Cemented short Exeter stems in primary THA show acceptable survival rates at long-term follow-up. Although femoral component fracture is a rare complication of a cemented short Exeter stem, orthopaedic surgeons should be aware of its incidence and possible risk factors.
To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration. We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.Aims
Methods
The increasing number of total hip arthroplasty (THA) used in young patients will inevitably lead to more revision procedures at younger ages, especially since the outcome of primary THA in young patients is already inferior compared to older patients. However, these data are lacking in literature. The aim of this study was to determine the survival of both acetabular and femoral components placed during primary and revision hip arthroplasty in patients under 55 years using Dutch Arthroplasty Register (LROI) data. All primary THA registered in the LROI between 2007–2018 in patients under 55 years were selected (n=25,682). Subsequent cup- and stem revision procedures were included. Kaplan-Meier survival analyses were used to estimate the survival probability of primary and revised cup- and stem components. Mean follow-up of primary cups and stems was 5.8 years (SD 3.2) and 5.9 years (SD 3.2), respectively. In total, 659 cup revision procedures and 532 stem revision procedures were registered. Most common reason for cup revision was acetabular loosening (n=163), most common reason for stem revision was femoral loosening (n=202). Primary cup survival for any reason at 10 years follow-up was 96.1% (95%CI: 95.7–96.4). For primary stems, 10 year survival for any reason was 97.1% (95%CI: 96.7–97.3). Mean follow-up of all revision procedures was 4.1 years (SD 2.9). Out of 659 cup revisions, 113 cup re-revisions were registered. Survival of revised cups, with end-point cup re-revision for any reason was 82.2% (95%CI: 78.8–85.1) at 5 years follow-up. Out of 532 stem revisions, 89 stem re-revisions were registered. For revised stems, survival at 5 year follow-up, with endpoint stem re-revision for any reason was 82.0% (95%CI: 78.2–85.2). The outcome of revised acetabular and femoral components is worrisome, with a survival of 82% at 5 years follow-up. This information is valuable to provide realistic expectations for these young patients at time of primary THA.
The goal of patellofemoral arthroplasty (PFA) is to replace damaged cartilage, and to correct underlying deformities, to reduce pain and prevent maltracking. We aimed to determine how PFA modifies patellar height, tilt, and tibial tuberosity to trochlear groove (TT-TG) distance. The hypothesis was that PFA would correct trochlear dysplasia or extensor mechanism malalignment. The authors prospectively studied a series of 16 patients (13 women and 3 men) aged 64.9 ± 16.3 years (range, 41 to 86) that received PFA. All knees were assessed pre-operatively and six months post-operatively using frontal, lateral, and ‘skyline’ x-rays, and CT scans to calculate patellar tilt, patellar height and tibial tuberosity–trochlear groove (TT-TG) distance.Background
Methods
Electron beam melting is a promising technique to produce surface structures for cementless implants. Biomimetic apatite coatings can be used to enhance bone ingrowth. The goal of this study was to evaluate bone ingrowth of an E-beam produced structure with biomimetic coating and compare this to an uncoated structure and a conventionally made implant surface.INTRODUCTION
METHODS
The clinical application of bone morphogenetic proteins (BMPs) offers solutions to many challenging problems in orthopaedics. However, a practical clinical problem is to obtain a controlled release of the BMPs. The attachment of heparin to biomaterials may result in an appropriate matrix for the binding, and sustained release of BMPs. Binding of growth factors to heparin stabilizes these growth factors, protects them from proteolytic degradation, and prolongs the half-life of BMPs in culture media 20-fold. We created a carrier based delivery system with a localized sustained release by loading a tricalciumphosphate/hydroxyapatite (TCP/HA) bone substitute coated with cross-linked collagen and heparin, with BMP-7. TCP/HA granules (BoneSave™, Stryker Orthopaedics) were coated with collagen, and subsequently the collagen was cross-linked in the presence (TCP/HA-Col-Hep) and absence (TCP/HA-Col) of heparin. BMP-7 was loaded onto the coated TCP/HA granules. Morphology of the coated collagen with and without heparin, and release kinetics of BMP-7 from the granules were analyzed. TCP/HA granules without coating were used as controls. Analysis showed a highly porous collagen network on both TCP/HA-Col and TCP/HA-Col-Hep granules. Immersion of the granules in BMP-7 solution, resulted in the binding of 54±3% (62.9±5.4 ng BMP-7/mg granule) to the TCP/HA granules, 64±8% (69.0±9.6 ng BMP-7/mg granule) to the TCP/HA-Col granules, and 78±1% (92.9±4.8 ng BMP-7/mg granule) to the TCP/HA-Col-Hep granules. TCP/HA granules showed a burst release of BMP-7 within the first 4 h. TCP/HA-Col granules showed an initial burst release, followed by a more gradual release. In contrast, BMP-7 release from the TCP/HA-Col-Hep granules was sustained up to 21 days. The sustained delivery system for BMP-7 developed in this study may provide a powerful tool for bone regeneration. This system could probably also be applied to deliver multiple growth factors that have affinities for heparin, which could for instance synergistically enhance osteogenesis by increasing vascularity.