The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances fracture healing compared to static interlocking. Patients were treated in a single level I trauma centre over a 2.5-year period. Group allocation was not randomized; both the micromotion nail and standard-of-care static locking nails (control group) were commercially available and selected at the discretion of the treating surgeons. Injury risk levels were quantified using the Nonunion Risk Determination (NURD) score. Radiological healing was assessed until 24 weeks or clinical union. Low-dose CT scans were acquired at 12 weeks and virtual mechanical testing was performed to objectively assess structural bone healing.Aims
Methods
Polymethylmethacrylate (PMMA) Acrylic Bone Cement is a polymer used to anchor the prosthesis during Joint Replacement Surgery. Arthroplasty with Bone Cement is associated with late loosening, compromising prosthetic stability leading to Revision arthroplasty. Different irrigating solutions such as Hydrogen Peroxide or Saline are used during arthroplasty. The aim of the study was to analyse the effects of Hydrogen Peroxide on the mechanical properties of Bone Cement.