In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.Aims
Methods
The minimisation of errors incurred during the learning process is thought to enhance motor learning and improve performance under pressure or in multitasking situations. If this is proven in surgical skills learning, it has the potential to enhance the delivery of surgical education. We aimed to compare errorless and errorful learning using the high-speed burr. Medical students (n=30) were recruited and allocated randomly to an errorless or errorful group. The errorless learning group progressively learnt tasks from easy to difficult on cedar boards simulating bone. The errorful learning group also progressed through the same tasks but not in order of difficulty. Transfer tasks assessed students’ performance of cervical laminoplasty on saw bone models to assess their level of learning from previous stages. During transfer task 2, students completed the procedure under time pressure and in the presence of distractors, in order to simulate real-life stressors in theatre. Accuracy, precision and safety of the procedure were scored by expert opinions from spine surgeons blinded to the grouping of the participants. Both errorless and errorful learners demonstrated improvements in performance with increasing amounts of practice (demonstrated by the decreased time taken for the task as well as improvement in accuracy of the cuts (depth, width and smoothness). The performance of both groups was not impaired by the incorporation of a secondary task which required participants to multitask. No statistically significant difference in performance was noted between the two groups. In contrast to previous research, there was no significant difference between errorless or errorful learning to develop skills with a high-speed, side-cutting burr. In both groups, practical learning during the session has led to improvement in overall performance with the burr relevant to cervical laminoplasty.