The primary stability of an uncemented femoral total knee replacement component is provided by press-fit forces at the bone-implant interface. This press-fit is achieved by resecting the bone slightly larger than the inner dimensions of the implant, resulting in a so-called interference fit. Previous animal studies have shown that an adequate primary stability is required to minimize micromotions at the bone-implant interface to achieve bone-ingrowth, which provides the secondary (long-term) fixation. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much interference fit eventually is achieved. Purpose of this study was therefore to assess the actual and effective interference fit and the amount of bone damage during implantation of an uncemented femoral knee component. In this study, five cadaveric distal femora were prepared and femoral knee components were implanted by an experienced surgeon. Micro-CT scans and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. In addition, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions (Figure.1). By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67± 0.17 mm, which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48± 0.27 mm, which was close to the nominal value of 1.5 mm. We observed combinations of bone damage and elastic deformation in all bone specimens (Figure. 2), which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation (Figure. 3). The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components and obtain adequate primary stability for all patients in a more predictable way.
To achieve a long-lasting fixation of uncemented femoral knee implants, an adequate primary stability is required. Several factors, including the applied load, bone quality, surgical preparation, and implant characteristics affect the primary fixation. Recently, novel Attune® cementless femoral component has been proposed by DePuy Synthes (Warsaw, IN, USA). We aimed to compare the primary stability of this novel high-flex design against the conventional LCS® under different loading conditions (gait, deep knee bend (DKB), and high-flex loading), while accounting for the effect of bone quality and cut accuracy. Six pairs of femora were prepared following the normal surgical procedure. Calibrated CT-scans and 3D-optical scans of the bones were obtained to measure bone mineral density (BMD) and bone cut accuracy, respectively. After implantation of the appropriate size implants (Left legs: Attune; right: LCS), a black-and-white speckle pattern was applied to each specimen (Fig.1B). The micromotion measurement was repeated three times in nine regions of interest (ROIs): the medial and lateral condyles from the posterior view; anterior, distal, and posterior regions from the medial and lateral views; the proximal tip of the anterior flange. The reconstructions were subjected to a gait load and a portion (around 50%) of the peak force of a DKB to prevent fracture of the proximal femur (Fig. 1A and Table. 1). The loads were derived from the Orthoload database using implant-specific inverse dynamics [1]. In addition, a sequence of DIC-images synchronized with the applied load was captured to find the relationship between micromotion and load. Afterwards, implants were pushed-off simulating 150° of flexion, while force-displacement graph was recorded. BMD and bone cut accuracy were not significantly different between the groups. Under both loading conditions, Attune had a significantly lower micromotion (Table. 1). Cut accuracy was not a significant factor, and BMD was only significant for the comparison under the gait loading (not under DKB conditions). High-flex push-off force was not significantly different. However, Attune required a significantly higher load to reach a micromotion of 50 or 150 µm during the push-off test. Different relations between micromotion and applied load, depending on the loading configuration and implant design, were found (Fig. 2). Our study has shown a clearly lower range of micromotion for the novel implant. Potential factors to explain the higher micromotion of LCS are parallel anterior and posterior bone cuts in the LCS versus the tapered bone cuts of the Attune. In addition, LCS has a less surface area in contact with bone due to the presence of a rim at the borders of the implant, which may have resulted in lower pre-stresses at the bone-implant interface. Taking to account, the promising clinical outcome of LCS and also the lower range of micromotion of Attune, we suggest that the Attune has a potential to be at least as successful as the LCS system from a bone fixation point of view. However, further clinical evaluation of the Attune is necessary to assess its performance on the longer term.