Exploring the relationship of gait function pre and post total knee replacement (TKR) in two groups of patients. Three-dimensional gait analysis was performed at Cardiff University, UK, and Karolinska University Hospital, Sweden, on 29 and 25 non-pathological (NP) volunteers, and 39 and 28 patients with end-stage knee osteoarthritis (OA), respectively. Patients were assessed pre and one-year post-TKR. Data reduction was performed via Principal Component (PC) analysis on twenty-four kinematic and kinetic waveforms in both NP and pre/post-TKR. Cardiff's and Karolinska's cohorts were analysed separately. The Cardiff Classifier, a classification system based on the Dempster-Shafer theory, was trained with the first 3 PCs of each variable for each cohort. The Classifier classifies each participant by assigning them a belief in NP, belief in OA (BOA) and belief in uncertainty, based on their biomechanical features. The correlation between patient's BOA values (range: 0–1, 0 indicates null BOA and 1 high BOA) pre and post-TKR was tested through Spearman's correlation coefficient in each cohort. The related-samples Wilcoxon signed-rank test (α=0.05) determined the significant changes in BOA in each cohort of patients. The Mann-Whitney U test (α=0.05) was run to explore differences between the patients’ cohorts.Abstract
Objectives
Methods
Exploring the association of objective lower limb function pre and post total knee replacement (TKR). 3D gait analysis was performed on 28 non-pathological participants (NP) and 40 patients with advanced knee osteoarthritis (OA) before and approximately one year after TKR. For NP and OA patients pre/post-TKR, 12 waveforms on kinetic and kinematic variables of the operative side were chosen to perform data reduction through Principal Component (PC) Analysis. The Cardiff Classifier, a classification system based on Dempster-Shafer theory, was trained with the first 3 PCs of each variable. The 18 highest-ranking PCs classifying the biomechanical features of each participant as Belief in Healthy, Belief in OA (BOA) or Belief in Uncertainty were used to quantify biomechanical changes pre- to post-TKR. The correlation between patients’ BOA values (range: 0 to 1, 0 indicates null BOA and 1 high BOA) pre- and post-TKR was tested through Spearman's correlation coefficient. Wilcoxon matched-pair test (α<0.05) determined the significance of the change in BOA.Abstract
Objectives
Methods
Focal cartilage defects (FCDs) found in medial and lateral compartments of the knee are accompanied with patient-reported pain and loss of joint function. There is a deficit of evidence to explain why they occur. We hypothesise that aberrant knee joint loading may be partially responsible for FCD pathology, therefore this study aims to use 3-dimensional motion capture (MoCap) analysis methods to investigate differences in gait biomechanics of subjects with symptomatic FCDs. 11 subjects with Outerbridge grade II FCDs of the tibiofemoral joint (5 medial compartment, 6 lateral compartment) and 10 non-pathological controls underwent level-gait MoCap analysis using an infra-red camera (Qualisys) and force-plate (Bertec) passive marker system. 6-degree of freedom models were generated and used to calculate spatio-temporal measures, and frontal and sagittal plane knee, hip and ankle rotation and moment waveforms (Visual 3D). Principle component analysis (PCA) was used to score subjects based on common waveform features, and PC scores were tested for differences using Mann-Whitney tests (SPSS). No group differences were found in BMI, age or spatio-temporal measures. Medial-knee FCD subjects experienced higher (p=0.05) overall knee adduction moments (KAMs) compared to controls. Conversely, lateral-knee FCD subjects found lower (p=0.031) overall KAMs. Knee flexion and extension moments (KFMs/KEMs) were relatively reduced (p=0.013), but only in medial FCD subjects. This was accompanied by a significantly (p=0.019) higher knee flexion angle (KFA) during late-stance. KAMs have been shown to be predictive of frontal plane joint contact forces, and therefore our results may be reflective of FCD subjects overloading their respective diseased knee condyles. The differences in knee sagittal plane knee moments (KFMs/KEMs) and angles (KFA) seen in medial FCD subjects are suggestive of gait adaptations to pain. Overall these results suggest treatments of FCDs should consider offloading the respective affected condyle for better surgical outcomes.
Useful feedback from a Total Knee Replacement (TKR) can be obtained from post-surgery in-vivo assessments. Dynamic Fluoroscopy and 3D model registration using the method of Banks and Hodge (1996) [1] can be used to measure TKR kinematics to within 1° of rotation and 0.5mm of translation, determine tibio-femoral contact locations and centre of rotation. This procedure also provides an accurate way of quantifying natural knee kinematics and involves registering 3D implant or bone models to a series of 2D fluoroscopic images of a dynamic movement. The aim of this study was to implement a methodology employing the registration methods of Banks and Hodge (1996) [1] to assess the function of different TKR design types and gain a greater understanding of non-pathological (NP) knee biomechanics.INTRODUCTION
AIM