Wet foam was used as bone substitute, this is an open cell foam that is fairly fragile but has the benefit of being constant and is cheap and readily available. This foam is not desired to have cancellous bone characteristics but is useful in observing the relative effect of adding these pegs. Two different settings in vivo were mimicked: that of a tibial tray and pegs resting fully on cancellous bone, in which case a central vertical force was applied, and that of the tray resting on the cortex on one side with a lateral vertical force applied over the other side in both the proud and flush setting (2&
4 pegs respectively). The investigation was undertaken using a home made system allowing a crude estimate of the forces producing initial subsidence, which was identified by initial fracture of the foam, and total subsidence which was identified as total failure of the foam. Each test was carried out three times. Controls were carried out on the tray with no pegs and on the pegs individually before attaching these to the tray and repeating the tests for each design.
The mean lateral vertical force for total subsidence with pegs mounted on the foam side was 12.3 kg (11.5–13 ± 0–76) for the short pegs, 13.5 kg (12–15.5 ± 1.8) for the medium pegs and 13.83 kg (12–15.5 ± 1.7) for the long pegs. Again no definite initial subsidence force could be identified.