Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
Masson B Lazennec J Fisher J Jenning L
Full Access

Dislocation remains one of the most common complications after total hip arthroplasty.

Precise cup position appears to be a main factor as significant variations occur for frontal and sagittal acetabular tilt and anteversion according to sitting or standing positions.

An innovative dual mobility ceramic-on-ceramic joint has been developed to solve these problems.

The dual mobility ceramic-on-ceramic joint allows to move the rotation center much deeper inside the insert in order to increase the joint stability without negative impact on the ROM. This device revealed higher torques against subluxation in comparison to the classical Al-Al systems, even with 36mm head diameters, or 41 mm metal on metal bearings.

The additional outer-bearing surface motion creates a second “adjustable acetabulum” due to the eccentration between the rotation center of the ball head and the rotation center of the bipolar head. This offset creates a resultant force that rotates the bipolar component.

Using two bearing ceramic surfaces, the intermediate component acts as a “self adjusting cup”, dealing with the variations of pelvic orientation and acetabulum anteversion.

The use of the dual mobility ceramic-on-ceramic joint seems an interesting alternative when facing difficult or unexpected situations for cup adjustment and cases with hip instability In a hip simulator in micro separation condition, the wear of the dual mobility ceramic-on-ceramic was less than 0.01 mm3/million cycles, the detection limit for wear measurement. There was no change in the surface roughness of the inserts.

The design of the joint with the mobile ceramic head prevented edge loading of the head on the edge of the cup. No stripe wear was observed.

Since 2006 more than 2000 dual mobility ceramic-on-ceramic systems have been implanted in Europe and clinical studies are conducted. The aim is to demonstrate the resistance to dislocation in primary total hip arthroplasty. Previous results over 125 patients in a prospective multicentric study show a Harris and Womac score equivalent to a standard hip prosthesis. No dislocations have been reported. No ceramic breakage or “squeaking” phenomenon appears.

Dislocation and microseparation are major causes of failure for ceramic-ceramic hip prosthesis. When no ideal solution has been found for acetabular implantation, the dual mobility ceramic-on-ceramic device is a real alternative. The exclusive design of the bipolar head give the high resistance to wear and stripe wear to the dual mobility ceramic-on-ceramic joint. Reducing the risk of dislocation and reducing wear drastically are two advantages that can place the dual mobility ceramic-on-ceramic joint as the best choice in primary Total Hip Arthroplasty. Obviously this choice applies to recurrent dislocation also.