Aim. We evaluated the effect of the intact periosteum on the biomechanical properties of the rat long bones. Materials-Methods. The biomechanical properties of both femora and tibiae of 30 male, 4-month old Wistar rats have been evaluated in three-point bending testing. In one bone of each pair of femora or tibiae the periosteum was preserved intact, while in the contra-lateral bone the periosteum was stripped off. Ultimate strength,stiffness,energy absorption and deflection were derived automatically from the load-deformation curve recorded for each bone.
Results. As regards the femur, the periosteum-covered bones displayed statistically significant higher values for all parameters measured compared to the periosteum-stripped bones. In the tibia, only energy absorption and deflection were significantly higher in the periosteum-covered bones. The fracture pattern was also different in these two groups. The periosteum-stripped femora and tibiae failed catastrophically, while in the periosteum-covered bones the two bone parts remained in close apposition stabilized by the periosteal membrane.
Conclusion. The periosteum exacerbates the biomechanical capacity of intact rat long bones examined in bending, probably taking advantage of its fibrous composition and elastic properties.