Soft tissue balance is important for good clinical outcome and good stability after TKA. Ligament balancer is one of the devices to measure the soft tissue balance. The objective of this study is to clarify the effect of the difference in the rotational position of the TKA balancer on medial and lateral soft tissue balance. This study included with 50 knees of the 43 patients (6 males, 37 females) who had undergone TKA with ADLER GENUS system from March 2015 to January 2017. The mean age was 71.1±8.1 years. All patients were diagnosed with medial osteoarthritis of the knee. All implants was cruciate substituted type (CS type) and mobile bearing insert. We developed a new ligament balancer that could be fixed to the tibia with keel and insert trial could be rotated on the paddle. We measured the medial and lateral soft tissue balance during TKA with the new balancer. The A-P position of the balancer was fixed on tibia in parallel with the Akagi line (A-P axis 0 group) and 20 degrees internal rotation (IR group) and 20 degrees external rotation (ER group). Soft tissue balance was measured in extension and 90 degrees of knee flexion on each rotational position. The mean angle of valgus and varus in IR group, 0 group and ER group were 4.6±2.2 degrees varus, 1.9±1.6 degrees varus and 0.4±2.4 degrees varus respectively in extension, and 5.5±3.0 degrees varus, 2.1±2.2 degrees varus and 0.7±3.2 degrees varus respectively in 90 degrees of knee flexion. There were significant differences between three groups in extension (p<0.0001) and flexion (p<0.0001). In other words, when the balancer was fixed on tibia with internal rotation against the Akagi line, the soft tissue balance indicated medial tightness. Conversely, when the balancer was fixed on tibia with external rotation against the Akagi line, the soft tissue balance showed lateral tightness. The insert trial significantly rotated to opposite side against the position of balancer fixed.Materials and Methods
Results
A full 3D postoperative analysis, i.e. a quantitative comparison between planned and postoperative positions of bone(s) and implant(s) in 3D, is necessary for a thorough assessment of the outcome of the surgery, as well as to provide information that could be used to optimize similar procedures in the future. In this work, we present a method of postoperative analysis based on a pair of X-ray images only, which reaches a level of accuracy that is comparable with the results obtained with a 3D postoperative image. The method consists in using 3D models of bones, segmented from 3D preoperative image (e.g. CT or MRI scans), and 3D models of implant, and aligning them independently to X-rays by matching contours manually drawn on the X-rays and projected contours. The result gives the relative postoperative position of bone and implant. The method was tested on a phantom consisting of commonly available femoral knee implant on a physical model of a femur (Sawbones®). Result was compared to the optical scan, considered as ground truth, of the implanted saw bone. Two studies were performed: inter-operator (six operators), and intra-operator (5 tests). In addition, the inter-operator study was repeated while asking all the operators to use the same pre-drawn contours. The results are presented by calculating the distance (anterior/posterior, proximal/distal, medial/lateral) between the centers of gravity, and the angles (varus/valgus, flexion/extension, external/internal rotations) of the implants from the X-ray based method and the ground truth. Results were also compared with the relative position of bone and implant extracted from a 3D CT postoperative image. Saw bone and implant were first segmented from this image. In order to determine the position of the implant, despite the metal artefacts in the CT images, the 3D model of the implant was registered on the segmented implant. All processing, including segmentation, registration of X-rays, and measurements, was performed using Mimics Innovation Suite 17.0 ®.Introduction
Methods
Previously, the Coonrad-Morrey elbow system has typically been performed using linked-type total elbow arthroplasty (TEA) implants. However, this implant have been reported to be associated with some problems, such as wearing down, loosening, the complexity of the necessary surgical techniques and inappropriate implant size for Asian people. The Discovery elbow system (Biomet Inc., Warsaw, US) has recently been developed and it has many advantages when compared to Coonrad-Morrey implant, but the treatment outcome for this system is unclear in patients with rheumatoid arthritis (RA). The aim of this study was to clarify the outcome of TEA using the Discovery elbow system.Background
Objectives
In order to elucidate the influence of sympathetic nerves on
lumbar radiculopathy, we investigated whether sympathectomy attenuated
pain behaviour and altered the electrical properties of the dorsal
root ganglion (DRG) neurons in a rat model of lumbar root constriction. Sprague-Dawley rats were divided into three experimental groups.
In the root constriction group, the left L5 spinal nerve root was
ligated proximal to the DRG as a lumbar radiculopathy model. In
the root constriction + sympathectomy group, sympathectomy was performed
after the root constriction procedure. In the control group, no
procedures were performed. In order to evaluate the pain relief
effect of sympathectomy, behavioural analysis using mechanical and
thermal stimulation was performed. In order to evaluate the excitability
of the DRG neurons, we recorded action potentials of the isolated
single DRG neuron by the whole-cell patch-clamp method.Objectives
Methods
The aim of this study was to report a 3 year follow up of vitamin E add polyethylene in total knee arthroplasty. UHMWPE powder (GUR1050) was mixed with 0.3% of vitamin E before consolidation by direct compression molding. The vitamin E added UHMWPE was applied to the articular surface and patella in 65 patients (mean age, 69.6 years). Joint fluid concentrations of tocopherol and matrix metalloproteinase 9 were measured in vitamin E added UHMWPE cases one year after surgery, and were compared to those of conventional UHMWPE cases and osteoarthritis patients. Concentrations of α-tocopherol and γ-tocopherol were measured by using HPLC with ultraviolet-visible wavelength detection. Concentrations of matrix metalloproteinase 9 were detected by using enzyme immunoassay. The Average Knee Society score were 91.7(clinical) and 76.7(functional). There were three failures (1 supracondylar fracture, and 2 skin necrosis). The average concentrations of α-tocopherol were 281.8μg/dL (10 cases) in the vitamin E group, 371.8μg/dL (15 cases) in the conventional group, and 317.8μg/dL (46 cases) in the osteoarthritis group. There were no significant differences among three groups. The average concentrations of γ-tocopherol were 43.4μg/dL in the vitamin E group, 52.3μg/dL in the conventional group, and 49.8μg/dL in the osteoarthritis group. There were no significant differences among three groups. The average concentrations of matrix metalloproteinase 9 were 83.2 ng/mL in the vitamin E group, 78.4 ng/mL in the conventional group, and 17.4 ng/mL in the osteoarthritis group. There was no significant difference between the vitamin E group and the conventional group. However, The matrix metalloproteinase 9 concentrations of the osteoarthritis group were significantly lower than others. No cases exhibited measurable polyethylene wear or osteolysis and also no abnormal values relating to vitamin E on joint fluid examinations. At three year follow-up, vitamin E added polyethylene demonstrated the safe use for the human body.
Lumbar Degenerative Kyphosis (LDK) is a clinical entity showing kyphosis in the lumbar spine in elderly with multilevel disc narrowing and a varied degree of osteoporosis. LDK patient complains of stooped gait with persistent low back pain and weakness. Purpose of this paper is to study the lumbar muscle in LDK patients with histopathologic and biophysical evaluations to investigate the pathogenesis. Materials and Methods: 1. Intramuscular pressure (IMP) (a) of the lumbar extensor compartment and hemoglobin content (Hb)□@(b) of 25 young volunteers were also investigated comparing in standing upright and flexion positions using (a)□@pressure monitoring kits and an non-invasive oxygenation monitor. 2.Muscle biopsy specimens obtained from the lumbar extensors of 9 LDK patients were histopathologically examined with HE, cytochrome c oxidase and other methods. These data were compared with muscles taken from age-match controls. Mitochondria function was also examined on biochemistry. 1. IMP of the extensors markedly increased in the flexion position (130.0□}45.4 in males and 86.3 mmHg in fem.) comparing to straight upright□@(22.8□}14.4, 17.0□}6.0). Oxy-Hb concentration decreased from 100% to 92.9, 95.5 % respectively in flexion, which was a sign of ischemia. 2. Both multifidus and sacrospinalis m. showed moderate to marked interstitial fibrosis, decreased number of muscle fibers and decreased stain intensity of cytochrome c oxidase. These finding were similar to those seen in repeatedly compressed muscles of an animal model of the chronic compartment syndrome. In comparison the rectus abd. and psoas muscles in the patients showed almost normal except for some aging changes. Conclusion: There appeared to be definite atrophy of the lumbar extensor muscles with histochemical and biochemical methods in LDK patients, whereas the flexors showed no change. This extensor atrophy is limited in the lumbar region in LDK. These localized atrophy of the lumbar extensors would suggest a result of high IMP during working in deep bending position of the spine for many years and may play important role in etiology of this disease condition.