Standing spinal alignment has been the center of focus recently, particularly in the setting of adult spinal deformity. Humans spend approximately half of their waking life in a seated position. While lumbopelvic sagittal alignment has been shown to adapt from standing to sitting posture, segmental vertebral alignment of the entire spine is not yet fully understood, nor are the effects of DEGEN or DEFORMITY. Segmental spinal alignment between sitting and standing, and the effects of degeneration and deformity were analyzed. Segmental spinal alignment and lumbopelvic alignment (pelvic tilt (PT), pelvic incidence (PI), lumbar lordosis (LL), PI-LL, sacral slope) were analyzed. Lumbar spines were classified as NORMAL, DEGEN (at least one level of disc height loss >50%, facet arthropathy, or spondylolisthesis), or DEFORMITY (PI-LL mismatch>10°). Exclusion criteria included lumbar fusion/ankylosis, hip arthroplasty, and transitional lumbosacral anatomy. Independent samples t-tests analyzed lumbopelvic and segmental alignment between sitting and standing within groups. ANOVA assessed these differences between spine pathology groups.INTRODUCTION
METHODS
Hip osteoarthritis (OA) results in reduced hip range of motion and contracture, affecting sitting and standing posture. Spinal pathology such as fusion or deformity may alter the ability to compensate for reduced joint mobility in sitting and standing postures. The effects of postural spinal alignment change between sitting and standing is not well understood. A retrospective radiographic review was performed at a single academic institution of patients with sitting and standing full-body radiographs between 2012 and 2017. Patients were excluded if they had transitional lumbosacral anatomy, prior spinal fusion or hip prosthesis. Hip OA severity was graded by the Kellgren-Lawrence grades and divided into two groups: low-grade OA (LOA; grade 0–2) and severe OA (SOA; grade 3–4). Spinopelvic parameters (Pelvic Incidence (PI), Pelvic Tilt (PT), Lumbar Lordosis (LL), and PI-LL), Thoracic Kyphosis (TK; T4-T12), Global spinal alignment (SVA and T1-Pelvic Angle; TPA; T10-L2) as well as proximal femoral shaft angle (PFSA: as measured from the vertical), and hip flexion (difference between change in PT and change in PFSA) were also measured. Changes in sit-stand radiographic parameters were compared between the LOA and SOA groups with unpaired t-test.Introduction
Methods
After in vitro validation based on 24 specimens and 4 different instrumentations, the model was used to simulate real cases. Applied loads were based on patient characteristics (weight, imbalance). Simulation results included mechanical stresses in the discs and within the implants. Clinical consistency of the simulations was tested through the gathering of clinical data for 66 patients instrumented with lumbo-sacral rigid screw-rod systems. Two subsets were considered: “mechanical successes” (53), and “mechanical failures” (13, including 11 screw breakage and 2 screw loosening). Blind comparison was then performed between these observed clinical outcomes and numerical simulations results.
Analysis of balance is emerging as an important parameter in spinal deformity. Force plate technology permits a quantitative study of balance through centre of pressure (COP) measurement. COP measurements obtained from the force plate approximate the projected centre of gravity. In a standing subject the COP reflects the projected centre of gravity however repeatability and reliability of such analysis is lacking. COP measurements were obtained from eight asymptomatic volunteers (mean age 32) with no history of back pain or previous spinal surgery. Each subject stood on a Zebris force plate platform for 30 seconds daily. 15 sets of data were acquired for each subject. For one subject, an additional 15 sets of data were collected on one day for comparison to the longitudinal data. Intra- versus inter-subject reliability analysis revealed a Cronbach’s alpha value >
0.9 for the following COP movement parameters: distance travelled over 30 seconds, distance travelled in the first and last five seconds, and average speed. Comparison of the mean intra- versus inter-subject coefficients of variation revealed significant differences for all parameters (p<
0.004). COP movement parameters are reliable in terms of intra-subject repeatability and can detect significant individual subject movement patterns. This suggests that COP movement patterns over time are idiosyncratic for each individual. While the repeatability of COP measurement has been established, the sensitivity to change with pathology and in response to treatment for spinal pathology remains to be evaluated.