The purpose of this study was to compare oxinium versus metal-on-polyethylene wear in two consecutive prospective randomized series of low friction total hip arthroplasty at a minimum 10-year follow-up. A total of 100 patients with a median age of 60.9 years were randomized to receive either oxinium (50 hips) or metal (50 hips) femoral head. The polyethylene socket was EtO sterilized in the first 50 patients, whereas it was highly cross-linked and remelted (XLPE) in the following 50 patients. The primary criterion for evaluation was linear head penetration measurement using the Martell system by an investigator blinded to the material. Also, a survivorship analysis was performed using wear related loosening revised or not as the end point. Complete data were available for analysis in 40 hips at a median follow-up of 12.9 years (11 to 14), and in 36 hips at a median follow-up of 12.3 years (10 to 13) in the EtO sterilized and XLPE series, respectively. In the EtO sterilized series, the mean steady-state wear rate was 0.245 ± 0.080 mm/year in the oxinium group versus 0.186 ± 0.062 mm/year in the metal group (p = 0.009). In the XLPE series, the mean steady-state wear rate was 0.037±0.016 mm/year in the oxinium group versus 0.036±0.015 mm/year in the metal group (p = 0.94). The survival rate at 10 years was 100% in both XLPE series, whereas it was 82.9% (IC 95%, 65–100) and 70.5% (IC95%, 50.1–90.9) in the metal-EtO and oxinium-EtO series, respectively. This RCT demonstrated that up to 14-year follow-up, wear was significantly reduced when using XLPE, irrespective of the femoral head material. Also, no osteolysis related complication was observed in the XLPE series. In the current study, oxinium femoral heads showed no advantage over metal heads and therefore their continued used should be questioned related to their cost.
The purpose of this study was to compare the effect of femoral head material (delta ceramic versus metal) on polyethylene wear in a consecutive prospective randomized series of low friction total hip arthroplasty. A total of 110 patients with a mean age of 60.6 ± 9.3 (34–75) years were randomized (power of 90%, alpha of 5%) to receive either a metal (55 hips) or a delta ceramic (55 hips) femoral head. The polyethylene socket was moderately cross-linked (3 Mrads of gamma radiation in nitrogen) and annealed at 130°C in all hips. All other parameters were identical in both groups. The primary criterion for evaluation was linear head penetration measurement using the Martell system, performed by an investigator blinded to the material of the femoral head. Creep and steady state wear values were calculated. At the minimum of 3-year follow-up, complete data were available for analysis in 38 hips at a median follow-up of 4.4 years (3.0 to 5.7), and in 42 hips at a median follow-up of 4.0 years (3.0 to 5.4) in the metal and delta ceramic groups, respectively. The mean creep, measured as the linear head penetration at one year follow-up, was 0.42 ± 1.0 mm in the metal group versus 0.30 ± 0.81 mm in the delta ceramic group (Mann and Whitney test, p = 0.56). The mean steady state penetration rate from one year onwards measured 0.17 ± 0.44 mm/year (median 0.072) in the metal group versus 0.074 ± 0.44 mm/year (median 0.072) in the delta ceramic group (Mann and Whitney test, p = 0.48). No case of delta ceramic femoral head fracture was recorded, and no hip had signs of periprosthetic osteolysis. This study demonstrated that up to 5-year follow-up, delta ceramic femoral head did not significantly influence creep neither wear of a contemporary annealed polyethylene. Longer follow-up is necessary to further evaluate the potential clinical benefits of delta ceramic.
Osteoporosis following ovariectomy has been suggested to modulate bone response to polyethylene wear debris. In this work, we evaluate the influence of estrogen deficiency on experimental particle-induced osteolysis. Polyethylene (PE) particles were implanted onto the calvaria of wild-type (WT), sham-ovariectomized (OVX), OVX mice and OVX mice supplemented with estrogen (OVX+E2) (12 mice per group). Sham-implanted mice served as internal controls. After 14 days, seven skulls per group were analyzed with a high-resolution micro-computed tomography (CT) and by histomorphometry, and for tartrate-specific alkaline phosphatase. Five calvariae per group were cultured for the assay of IL-1, IL-6, TNF- and RANKL secretion using quantitative ELISA. The expression of RANKL and OPG mRNA were evaluated using real-time PCR. As assessed by CT and by histomorphometry, PE particles induced an extensive bone resorption and an intense inflammatory reaction in WT, sham-OVX and OVX+E2 mice. In OVX mice group, these features appeared considerably attenuated. In WT, sham-OVX and OVX+E2 mice, PE particles induced an increase in serum IL-6, in TNF-and RANKL local concentrations, and resulted in a two-fold increase in RANKL/OPG mRNA ratio. Conversely, these parameters remained unchanged in OVX mice after PE implantation. The combination of two well-known bone resorptive mechanisms ultimately attenuated osteolytic response, suggesting a protective effect of estrogen deficiency on particle-induced osteolysis. This paradoxical phenomenon was associated with a downregulation of pro-resorptive cytokines. It is hypothesized that excessive inflammatory response was controlled, illustrated by the absence of increase of serum IL-6 in OVX mice after PE implantation.