Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 134 - 134
1 Feb 2017
Majima T Matsui S Nishiike O Takahashi K Oshima Y Iizawa N Takai S
Full Access

Introduction

In order to achieve good clinical results in TKA, soft tissue balance is important. Soft tissue balance is closely related to knee kinematics which affects clinical results.

Modified gap balancing technique is one of the standard techniques for posterior stabilized (PS) TKA. On the other hand, appropriate load for the measurement of gap balance has not been established.

The purpose of the present study is to measure the mechanical properties of soft tissue structure of knee sleeve in flexion and extension during PS TKA using newly developed balancer. The understanding of the mechanical properties is crucial. In particular if these properties are used as input for surgical procedures, standard technique for many surgeons will be established.

Materials and Methods

Medial compartmental osteoarthrosis (OA) patients (13 female and 7 male) were evaluated. Average age, BMI, and Varus deformity were 72.1 years, 26.9, and 12 degrees, respectively.

The newly developed center paddle balancer consists of a built-in spring (Fig. 1). Figure 2 shows the sequence of surgery and measurements. In the surgery, we measured the balance (degrees in Figure 1, A) and distance (mm in Figure 1, B) in extension with a load (Figure 1,C) at transition zone of toe region to linear region. Then, applying the load until flexion gap was the same as that in extension with a patella reduction, we measured the femoral component rotation from the balancer (degrees in Figure 1, A). The anterior and posterior femoral cuts were performed according to measured femoral component rotation which angle is parallel to tibial cut surface.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 24 - 24
1 Feb 2017
Iizawa N Oshima Y Kataoka T Matsui S Takai S
Full Access

Introduction

For restoration of neutral limb alignment in Total Knee Arthroplasty (TKA), we usually start by removing osteophytes in varus osteoarthritic knees. However, we have found no reports in the literature regarding research on the exact influence of osteophyte removal on angle correction. The purpose of this study was to define the influence of osteophyte removal on limb alignment correction in the coronal plane in TKA.

Materials and Methods

Nine patients with varus malalignment that were scheduled for TKA were included in this study. Only patients with degenerative osteoarthritis were considered. After registration of a navigation system, each knee was tested at maximum extension, and 30 and 60 degrees of flexion before and after osteophyte removal. The same examiner applied all external loads of 10 N-m valgus torque at each angle and in both states. Subsequently, the widths of the osteophytes were measured. All data were analyzed statistically using paired t-test and correlation coefficient. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 87 - 87
1 May 2016
Kataoka T Iizawa N Mori A Oshima Y Matsui S Takai S
Full Access

Introduction

Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in TKA.

Materials and Methods

This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with an intact knee (S0), and thereafter femoral arthroplasty only (S1), tibial arthroplasty (S2), release of the dMCL (S3), and finally, release of the POL (S4). The same examiner applied all external load of 10 N-m valgus and a 5 N-m internal and external rotation torque at each flexion angle for the each cutting state. All data were analyzed statistically using one-way ANOVA and we investigated the correlation between the medial gap and the rotation angle. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 48 - 48
1 May 2016
Iizawa N Mori A Majima T Kawaji H Matsui S Takai S
Full Access

Precise biomechanical knowledge of individual components of the MCL is critical for proper MCL release during TKA. This study was to define the influences of the deep MCL and the POL on valgus and rotatory stability in TKA using six cadaveric knees with sequential sectioning sequence. A CT-free navigation system monitored motion after application of valgus loads and internal and external rotation torques at 0°, 20°, 30°, 60°, and 90°of knee flexion. Significant increases of rotatory instability were seen on release of the deep MCL. And, rotatory instability further increased after release of the POL. Surgical approach of retaining the deep MCL and POL has a possibility to improve the outcome after primary TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 23 - 23
1 May 2016
Matsui S Majima T Mominoki K Koizumi R Kawaji H Takahashi K Takai S
Full Access

Introduction

Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage metabolism. It have been reported that ceramic is bioinert for biological tissue. On the other hand, metal including cobalt-chrome (Co-Cr) have some detrimental effect on biological tissue. However, there is no report concerning acetabular cartilage metabolism after hip endprosthesis implantation.

In the present study, we hypothesized that ceramic head have small detrimental effect on cartilage cell metabolism. Specific aim of the study is to compare the protein level of inflammation related cytokines, amount of hyaluronic acid (HA) in culture media, and cartilage mRNA expression in organ culture model of hip end prosthesis implanted using ceramic head and Co-Cr head.

Materials and Methods

Six acetabulum of 3 matured crossbred pig (average weight: 36 +/− 3.6kg) was retrieved. Animal experiment was performed under the rules of ethical committee of animal experiment. Average diameter of pig acetabulum was 26.3 +/− 0.6 mm. Just after sacrifice, mechanical loading using Instron testing machine with 26mm diameter of Co-Cr in right hip and Ceramic heads in left hip was performed in culture media. Ten thousand cycles of cyclic compression and rotation load (1.5kN to 0.15kN of compression and 12 degrees of rotation) to cartilage was applied at 1Hz (Figure 1).

Culture media was analyzed for protein levels of inflammation related cytokines and amount of HA. Relative quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) from acetabular cartilage was performed as previously reported using specific primer sets for type II collagen, aggrecan, TNF-alpha, Interleukine-1 and 6, and MMP-1, 3, 13.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 47 - 47
1 May 2016
Iizawa N Mori A Oshima Y Matsui S Kataoka T Takai S
Full Access

Introduction

Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on kinematics in TKA.

Materials and Methods

This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with femoral arthroplasty only (S1), and thereafter sequentially; medial half tibial resection with spacer (S2), ACL cut (S3), tibial arthroplasty (S4), release of the dMCL (S5), and finally, release of the POL (S6). The same examiner applied all external loads of 10 N-m valgus and 5 N-m internal and external rotation torques at each flexion angle and for each cut state. The AP locations of medial and lateral condyles were determined as the lowest point on each femoral condyle. All data were analyzed statistically using paired t-test. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 58 - 58
1 Jan 2016
Iizawa N Mori A Matsui S Oba R Satake Y Takai S
Full Access

Introduction

Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in TKA.

Materials and Methods

This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with femoral arthroplasty only (S1), and thereafter sequentially, medial half tibial resection with spacer (S2), ACL cut (S3), tibial arthroplasty (S4), release of the dMCL (S5), and finally, release of the POL (S6). The same examiner applied all external loads of 10 N-m valgus and 5 N-m internal and external rotation torques at each flexion angle and for each cut state. All data were analyzed statistically using two-way ANOVA and paired t-test. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 354 - 354
1 Dec 2013
Iizawa N Mori A Matsui S Oba R Ito T Takai S
Full Access

Purpose:

Biomechanical knowledge of the medial collateral ligament (MCL) is important for MCL release during knee arthroplasty. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in knee arthroplasty.

Methods:

Six cadaveric knees were divided into 2 groups with unique sequential sectioning sequences of the dMCL and the POL. Group A (n = 2) first received femoral arthroplasty only, and thereafter sequentially received medial half tibial resection with spacer, ACL cut, dMCL cut, POL cut, and finally tibial arthroplasty. Group B (n = 4) first received femoral arthroplasty only, and thereafter sequentially received medial half tibial resection with spacer, ACL cut, tibial arthroplasty, dMCL cut, and finally, POL cut. A CT-free navigation system monitored motion after application of valgus loads (10 N-m) and internal and external rotation torques (5 N-m) at 0°, 20°, 30°, 60°, and 90°of knee flexion.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 256 - 256
1 Mar 2013
Matsui S Takai S
Full Access

Quantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for preventing MCL damage during unicompartmental knee arthroplasty (UKA). The objective of this study was to quantitatively determine the morphology of the medial capsule and deep MCL on tibias.

METHODS

24 cadaveric human knees (control: 19, OA: 5) were dissected to investigate the deep MCL and capsule anatomy. The specimens were fixed in full extension and this position was maintained during the dissection and morphometric measurements. The distance from the tibial insertion sites of the medial capsule including deep MCL to the medial joint surface were measured at anterior, middle, and posterior sites. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex was also measured.

RESULTS

In control, the distance from the tibia insertion sites of the medial capsule including deep MCL to the anterior 1/3, middle 1/3, and posterior 1/3 of medial joint surface were 12.5 ± 1.5 mm and 8.0 ± 1.6 mm and 9.4 ± 1.6 mm, respectively. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex were 6.3 ± 3.3 degree and 12.7 ± 2.1 degree, respectively. In OA, the distance from the tibia insertion sites of the medial capsule including deep MCL to the anterior 1/3, middle 1/3, and posterior 1/3 of medial joint surface were 14.0 ± 1.7 mm and 9.6 ± 1.9 mm and 10.8 ± 1.5 mm, respectively. Posterior capsule slope and posterior tibia slope to the anterior tibia cortex were 8.0 ± 3.5 degree and 14.5 ± 2.2 degree, respectively.