Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 5, Issue 8 | Pages 715 - 720
23 Aug 2024
Shen TS Cheng R Chiu Y McLawhorn AS Figgie MP Westrich GH

Aims

Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used.

Methods

We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 44 - 44
1 Oct 2014
McLawhorn AS Weeks KD Nam D Sculco PK Mayman DJ
Full Access

Obesity is a risk factor for acetabular malposition when total hip arthroplasty (THA) is performed with manual orientation techniques. However, conflicting evidence exists regarding the usefulness of computer-assisted surgery for performing THA in obese patients. The purpose of this study was to compare the precision and accuracy of imageless navigation for acetabular component placement in obese versus non-obese patients.

After institutional review board approval, 459 THA performed for primary hip osteoarthritis were reviewed retrospectively. The same imageless navigation system was used for acetabular component placement in all THA. During surgery the supine anterior pelvic plane was referenced superficially. THA was performed via posterolateral approach in the lateral position. A hemispherical acetabular component was used, with target inclination of 40° and target anteversion of 25°. Computer software was used to determine acetabular orientation on postoperative anteroposterior pelvic radiographs. Obese patients (BMI ≥ 30 kg/m2) were compared to non-obese patients. A 5° difference in mean orientation angles was considered clinically significant. Orientation error (accuracy) was defined as the absolute difference between the target orientation and the measured orientation. Student's t test was used to compare means. Hartley's test compared variances of the mean differences (precision). Fisher exact tests examined the relationship between obesity and component placement in the target zone (target ± 10°) for inclination and version. All statistical tests were two-sided with a significance level of 0.05.

Differences in mean inclination and anteversion between obese and non-obese groups were 1.1° (p=0.02 and p=0.08, respectively), and not clinically significant. Inclination accuracy trended toward improvement for non-obese patients (p=0.06). Inclination precision was better for non-obese patients (p=0.006). Accuracy and precision for anteversion were equal between the two groups (p=0.19 and p=0.95, respectively). There was no relationship between obesity and placement of the acetabulum outside of the target ranges for inclination (p=0.13), anteversion (p=0.39) or both (p=0.99), with a trend toward more inclination outliers in obese patients versus non-obese patients (7.3% versus 3.9%).

The observed differences in mean acetabular orientation angles were not clinically significant (< 5°), although inclination orientation was less accurate and precise for obese patients. In contrast to existing literature, we found no difference in the accuracy and precision with regard to anteversion in obese and non-obese patients. We propose that accurate superficial registration of landmarks in obese patients is achievable, and the use of imageless navigation likely improves acetabular positioning in obese and non-obese patients.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 43 - 43
1 Oct 2014
McLawhorn AS Sculco PK Weeks KD Nam D Mayman DJ
Full Access

Surgeons often target the Lewinnek zone (40°±10° of inclination; 15°±10° of anteversion) for acetabular orientation during total hip arthroplasty (THA). However, matching native anteversion (20°-25°) may achieve optimal stability. The purpose of this study was to (1) determine incidence of early dislocation with increased target acetabular anteversion, and (2) report the accuracy of imageless navigation for achieving target acetabular position in a large, single-surgeon cohort.

A posterolateral approach with soft tissue repair was performed in the 553 THA meeting the inclusion criteria. The same imageless navigation system was used for acetabular component placement in all THA. Target acetabular orientation was 40° ± 10° of inclination and 25° ± 10° of anteversion. Computer software was used to measure acetabular positioning on 6-week postoperative anteroposterior pelvic radiographs. Incidence of dislocation within 6 months of surgery was determined. Repeated measures multiple regression using the Generalised Estimating Equations approach was used to identify baseline patient characteristics (age, gender, BMI, primary diagnosis, and laterality) associated with component positioning outside of the targeted ranges for inclination and anteversion. Fisher exact tests were used to examine the relationship between dislocation and component placement in either the Lewinnek safe zone or the targeted zone. All tests were two-sided with a significance level of 0.05.

Mean inclination was 42.2° ± 4.9°, and mean anteversion was 23.9° ± 6.5°. 82.3% of cups were placed within the target zone. Variation in anteversion accounted for 67.3% of outliers. Only body mass index was associated with inclination outside the target range (p = 0.017), and only female gender was associated with anteversion outside the target range (p = 0.030). Six THA (1.1%) experienced early dislocation, and 3 THA (0.54%) were revised for multiple dislocations. There was no relationship between dislocation and component placement in either the Lewinnek zone (p = 0.224) or the target zone (p = 0.287).

This study demonstrates that increasing target acetabular anteversion using the posterolateral approach does not increase the incidence of early THA dislocation. However, the long-term effects on bearing surface wear and stability must be elucidated. The occurrence of instability even in patients within our target zone emphasises the importance of developing patient-specific targets for THA component alignment.