For over a decade, modular titanium fluted tapered (TFT) stems have demonstrated excellent clinical success for femoral revision total hip arthroplasty (THA) surgery. The aim of this study was to report the short-term outcomes of a novel modern monoblock TFT stem used for revision and complex primary THA with a minimum of 2 years follow-up. We identified 126 patients who received a single monoblock TFT stem - 26 patients for complex THA (failed fracture fixation) and 100 patients for revision THA. The reasons for revision THA included 40 for previous prosthetic joint infection (PJI), 42 for aseptic loosening, 9 for trunnionosis, 9 for periprosthetic fractures. The Paprosky grading for femoral bone loss at the time of surgery and the measured subsidence of femoral stems at 3 months follow-up were determined. We evaluated the number and indications for re-operations. The mean time from surgery was 3.9 years (range 2.0 to 6.9 years). A paired t-test analysis showed significant improvement from pre-operative versus post-operative clinical outcome scores (p<0.001) for HHS (38.76 +/- 15.24vs. 83.42 +/- 15.38), WOMAC (45.6 ± 19.0 vs. 69.9 ± 21.3) and SF-12 Physical component (31.7 ± 8.1 vs. 37.8 ± 11.3) and SF-12 Mental component (48.2 ± 12.2 vs. 51.6 ± 12.5). The Paprosky grading for femoral bone loss was Grade 1 (3.9%), Grade 2 (35.7%), Grade 3A (47.6%), Grade 3B (11.1%) and Grade 4 (1.6%) cases. There were 18 re-operations (14.7%) with 13 for PJI (7 treated with implant retention, 6 treated with a two-staged revision), 4 for instability and one for acetabular aseptic loosening. There were no aseptic failures of the stem. This novel modern monoblock TFT stem provided reliable femoral fixation and has increasingly supplanted the use of modular TFT stems for complex primary and revision surgery in our institution.
To compare the in vivo long-term fixation achieved by two acetabular components with different porous ingrowth surfaces using radiostereometric analysis (RSA). This was a minimum ten-year follow-up of a prospective randomized trial of 62 hips with two different porous ingrowth acetabular components. RSA exams had previously been acquired through two years of follow-up. Patients returned for RSA examination at a minimum of ten years. In addition, radiological appearance of these acetabular components was analyzed, and patient-reported outcome measures (PROMs) obtained.Aims
Methods
The success of total knee replacement (TKR) surgery can be attributed to improvements in TKR design, instrumentation, and surgical technique. Over a decade ago oxidized zirconium (OxZr) femoral components were introduced as an alternative bearing surface to cobalt-chromium (CoCr), based on strong in-vitro evidence, to improve the longevity of TKR implants. Early reports have demonstrated the clinical success of this material however no long-term comparative studies have demonstrated the superiority of OxZr implants compared to a more traditional CoCr implant. This study aims to compare long-term survivorship and outcomes in OxZr and CoCr femoral components in a single total knee design. We reviewed our institutional database to identify all patients whom underwent a TKA with a posterior stabilized OxZr femoral component with a minimum of 10 years of follow-up. These were then matched to patients whom underwent a TKA with the identical design posterior stabilized CoCr femoral component during the same time period by gender, age and BMI. All patients had their patella resurfaced. All patients were prospectively evaluated preoperatively and postoperatively at 6 weeks, 3 months, 12 months, 2 years and every 1 to 2 years thereafter. Prospectively collected clinical outcome measures included, Western Ontario and McMaster Universities osteoarthritis index (WOMAC), Short-Form 12 (SF-12) and Knee Society clinical rating scores (KSCRS). Charts and radiographs were reviewed to determine the revision rates and survivorship (both all cause and aseptic) at 10 years allowing comparison between the two cohorts. Paired analysis was performed to determine if differences existed in patient reported outcomes.Purpose
Methods
The effectiveness of patient specific instrumentation (PSI) to perform total knee arthroplasty (TKA) remains controversial. Multiple studies have been published that reveal conflicting results on the effectiveness of PSI, but no study has analyzed the contact kinematics within knee joints replaced with the use of PSI. Since a departure from normal kinematics can lead to eccentric loading, premature wear, and component loosening, studying the kinematics in patients who have undergone TKA with PSI can provide valuable insight on the ability of PSI to improve functionality and increase longevity. The goal of the present study was to compare femoral and tibial component migration (predictive of long-term loosening and revision) and contact kinematics following TKA using conventional instruments (CI) and PSI based surgical techniques. The study was designed as a prospective, randomized controlled trial of 50 patients, with 25 patients each in the PSI and CI groups, powered for radiostereometric analysis (RSA). Patients in the PSI group received an MRI and standing 3-foot x-rays to construct patient-specific cut-through surgical guides for the femur and tibia with a mechanical limb alignment. All patients received the same posterior-stabilized implant with marker beads inserted in the bone around the implants to enable RSA imaging. Patients underwent supine RSA exams at multiple time points (two and six weeks, three and six months, and one and two years). At 2 years post-op, a series of RSA radiographs were acquired at different knee flexion angles, ranging in 20° increments from 0° to 120°, to measure the tibiofemoral contact kinematics. Migrations of the femoral and tibial components were calculated using model-based RSA software. Kinematics were measured for each condyle for magnitude of excursion, contact location, and stability.Introduction
Methods
The purpose of this study is to estimate the cost-effectiveness of performing total hip arthroplasty (THA) versus nonoperative management (NM) in non-obese (BMI 18.5–24.9), overweight (25–29.9), obese (30–34.9), severely-obese (35–39.9), morbidly-obese (40–49.9), and super-obese (50+) patients. We constructed a state-transition Markov model to compare the cost-utility of THA and NM in the six above-mentioned BMI groups over a 15-year time period. Model parameters for transition probability (i.e. risk of revision, re-revision, death), utility, and costs (inflation adjusted to 2017 US dollars) were estimated from the literature. Direct medical costs of managing hip arthritis were accounted in the model. Indirect societal costs were not included. A 3% annual discount rate was used for costs and utilities. The primary outcome was the incremental cost-effectiveness ratio (ICER) of THA versus NM. One-way and Monte Carlo probabilistic sensitivity analysis of the model parameters were performed to determine the robustness of the model.Introduction
Methods
As new innovations are developed to improve the longevity of joint replacement components, preclinical testing is necessary in the early stages of research into areas such as osseointegration, metal-cartilage wear and periprosthetic joint infection (PJI). Large-animal studies that test load-bearing components are expensive, however, requiring that animals be housed in special facilities that are not available at all institutions. Comparably, small animal models, such as the rat, offer several advantages including lower cost. Load-bearing implants remain difficult to manufacture via traditional methods in the sizes required for small-animal testing. Recent advances in additive manufacturing (3D metal-printing) have allowed for the creation of miniature joint replacement components in a variety of medical-grade metal alloys. The objective of this work is to create and optimize an image-based 3D-printed rat hip implant system that will allow in vivo testing of functional implant properties in a rat model. A database of n=25 previously-acquired, 154μm micro-CT volumes (eXplore Locus Ultra, GE Medical) of male Sprague-Dawley rats (390–610g) were analyzed to obtain spatial and angular relationships between several anatomical features of the proximal rat femora. Mean measurements were used to guide the creation of a femoral implant template in computer-aided design software (Solidworks, Dassault Systemes). Several different variations were created, including collarless and collared designs, in a range of sizes to accommodate rats of various weights. Initial prototypes were 3D-printed 316L stainless steel with subsequent iterations printed in Ti6Al4V titanium and F75 cobalt-chrome. Implants were post-processed via sandblasting, hand-polishing, ultrasonic bath, and sterilization in an autoclave. Innate surface texturing was left on manufactured stems to promote osseointegration. Surgical implantation was performed in three live Sprague-Dawley rats (900g, 500g, 750g) with preservation of muscle attachments to the greater trochanter. Micro-CT imaging and X-ray fluoroscopy were performed post-operatively on each animal at 1 day, and 1, 3, 9 and 12 weeks to evaluate gait and component positioning.Introduction
Methods
Unicompartmental versus total knee arthroplasty has been a debated topic for decades. The purpose of this study was to compare the survivorship and clinical outcomes of a large primary total knee arthroplasty versus unicompartmental knee arthroplasty cohort. A consecutive series of 6352 TKAs and 296 UKAs with a minimum of one year follow-up were evaluated. Pre-operative scores, latest scores, and change in clinical outcome scores (KSCRS, SF12, WOMAC) were compared and tested for significance using the students t-test.Purpose
Method
The pros and cons of general anesthesia versus spinal anesthesia in total hip arthroplasty has been a long debated topic. The purpose of this study was to compare the surgical times, blood loss and transfusion requirements between anesthetic types in patients undergoing primary total hip arthroplasty. A consecutive series of 1600 THA procedures with complete preoperative and postoperative data were evaluated. Twenty eight percent of procedures were performed with a general anesthetic (GA), 67% with a spinal anesthetic (SP) and 5% with a combination of the two. Outcomes were compared and tested for significance using the Independent Samples Kruskal Wallis or Pearson Chi-Square analysis.Purpose
Method
The patella provides a mechanical advantage to the knee extensor mechanism. Patellectomy, performed for trauma or patellofemoral arthrosis, does not preclude the development of tibiofemoral arthrosis. Total knee arthroplasty is the mainstay of treatment for tibiofemoral arthrosis. The purpose of this study was to evaluate the outcomes of total knee arthoplasty in patients who previously underwent patellectomy. A retrospective analysis was completed on a prospectively collected database to identify all patients who underwent total knee arthroplasty following a previous patellectomy. Sixty-one total knee arthroplasties in 57 patients were identified. Patient demographics as well as functional outcome scores, including WOMAC and Knee Society Scores, were evaluated.Purpose
Method