Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 6 - 6
1 Dec 2015
Kostopoulou F Papathanasiou I Anastasopoulou L Aidarinis C Mourmoura E Malizos K Tsezou A
Full Access

Toll-like receptors (TLRs) are crucial components of the immune system that recognize microbial infection and trigger anti-microbial host defense responses. Gram positive bacteria are causative factors of bone infections, as they alter the balance of coordinated activities during bone remodeling, stimulating osteoclastogenesis. The aim of the study was to investigate whether genetic variation in TLR2 and TLR4 genes predisposes to bone infections’ susceptibility.

One hundred and twenty patients with bone infections (osteomyelitis) and 200 healthy controls were genotyped for two single nucleotide polymorphisms (SNPs), R753Q [A/G] in TLR2 gene and T399I [C/T] in TLR4 gene. DNA was extracted from whole blood and the above SNPs were typed with PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) method for genotype identification. All patients were infected by Gram-positive bacteria, predominantly Staphylococcus aureus. Statistical analysis was carried out using the chi-square test.

We observed a significantly increased frequency in patients carrying the GA genotype of TLR2 R753Q polymorphism compared to controls (p<0.05). We also found that the A allele was more common in patients than in controls. All individuals carrying the A allele were heterozygous for this variant, while homozygous mutant individuals were not detected in the patients and the control group. In contrast, we found that the TLR4 T399I [C/T] SNP was similarly distributed among the two groups (patients and controls). The mechanism through which TLR2 mediates its effect in bone infections is under investigation.

A significant difference was observed in the genotype frequency of TLR2 R753Q [A/G] polymorphism in patients, suggesting that genetic variability in TLR2 gene may be associated with susceptibility to osteomyelitis in response to bacterial invasion in the bone.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 336 - 336
1 Jul 2011
Tsezou A Poultsides L Papathanasiou I Malizos KN
Full Access

Septic arthritis induced by Staphylococcus aureus causes a rapid destruction of joint cartilage and periarticular bone. The mechanisms behind this phenomenon are not fully understood. Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria. TLR2 signaling can lead to the activation of NF-kB through myeloid differentiation factor 88 (MyD88) dependent pathway. The purpose of this study was to examine the catabolic role of TLR2 mediated by the NF-kB pathway in human septic arthritic chondrocytes.

Septic arthritic (SA) chondrocytes (n=7) and fibroblast-like synoviocytes (n=7) infected by gram-positive bacteria, mainly Staphylococcus aureus, as well as chondrocytes from healthy individuals (n=5) were used for this study.

The expression of TLR2 in septic articular cartilage and normal cartilage was analyzed by real time reverse transcription polymerase chain reaction as well western blot analysis. Production of matrix metalloproteinase MMP- 13 and IL-1b was evaluated by enzyme-linked immunosorbent assay. MyD88 protein expression levels and NF-kB activation were evalutated by western blot analysis. Downregulation of TLR2 expression was achieved after transfection with specific siRNA against TLR2 using liposomes.

We observed that TLR2 mRNA and protein expression was significantly up-regulated in septic arthritic cartilage. Also MMP-13 and IL-1b production were significantly increased in septic arthritic chondrocytes compared to normal. Blocking TLR2 in septic chondrocytes resulted in significant reduction of MyD88 and NF-kB protein levels as well as reduction in MMP-13 and IL-1b expression.

It could be suggested that stimulation of TLRs by microbial components may represent the initial signal promoting a pro-inflammatory environment that will enhance degeneration of articular cartilage and the surrounding synovial cells. Targeting NF-kB signalling pathway through TLR2 gene silencing may be of potential therapeutic value in treatment of joint diseases.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 360 - 360
1 Jul 2011
Tsezou A Papathanasiou I Orfanidou T Malizos K
Full Access

The Wnt/b-catenin signaling pathway participates in normal adult bone and cartilage biology and seems to be involved in cartilage degeneration and subsequent OA progression. The aim of this study was to investigate the activation of Wnt/b-catenin pathway in osteoarthritis and the role of LRP5, a coreceptor of Wnt/b-catenin pathway, in human osteoarhritic chondrocytes.

Human cartilage was obtained from 11 patients with primary osteoarthritis (OA) undergoing total knee and hip replacement surgery. Normal cartilage was obtained from 5 healthy individuals. b-catenin and LRP5 mRNA and protein levels were investigated using real time PCR and western blot analysis, respectively. Blocking LRP5 expression was performed using small interfering (siRNA) against LRP5 and subsequent MMP-13 mRNA and protein levels were evaluated by real time RCR and western blot analysis, respectively.

We confirmed the activation of Wnt/b-catenin pathway in osteoarthritis, as we observed significant upregulation of b-catenin mRNA and protein expression in osteoarthritic chondrocytes. We also observed that LRP5 mRNA and protein expression was significantly up-regulated in osteoarthritic cartilage compared to normal. Also, blocking LRP5 expression using siRNA against LRP5 resulted in a significant decrease in MMP-13 mRNA and protein expressions.

Our findings suggest that the upregulation of LRP5 mRNA and protein expression in osteoarthritic chondrocytes results in an increased activation of Wnt/b-catenin pathway in osteoarthritis. The observed reduction of MMP-13 expression after blocking LRP5 expression in osteoarthritic chondrocytes, suggests the involvement of LRP5 in the progression and pathogenesis of osteoarthritis.