Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 302 - 302
1 Sep 2005
Schleicher I Parker T Leavesley D Crawford R Upton Z Xiao Y
Full Access

Introduction and Aims: To deliver osteogenic cells into bone defects, the crucial steps are cell attachment and migration in cell-delivery biomaterials. The aim of this study was to examine whether complexes comprised of vitronectin (VN), insulin growth factors (IGFs) and insulin growth factor binding proteins (IGFBPs) could enhance human osteoblasts attachment, especially cell migration in three-dimensional (3-D) culture.

Method: Human osteoblasts derived from alveolar bone chips (passage 4–10) and established human osteoblast cell line SaOS-2 were used. These cells were seeded on scaffolds of type I collagen sponges and poly glycolic acid (PGA) (approx. one millimetre thick, porous structure), which had been coated with VN +/− IGF-I +/− IGFBP-3. Cell attachment and migration were evaluated by cell counting, confocal microscopy, and scanning electron microscopy.

Results: The number of attached human osteoblasts was significantly higher in wells in which pre-bound VN was coated on the polystyrene culture dish or on type I collagen sponges. However, no significant difference of cell attachment was observed when growth factors were bound to these surfaces in the presence of VN. In the two scaffold materials examined, greater cell attachment was found in type I collagen sponges compared to PGA scaffolds. However, coating the scaffolds with complexes comprised of VN + IGF-I or VN + IGFBP-5 + IGF-I enhanced cell attachment on PGA. Moreover, the presence of vitronectin + IGF-I + IGFBP-5 resulted in significantly greater osteoblast migration into deep pore areas as compared to untreated scaffolds or scaffolds treated with different combinations of the VN +/− IGF +/− IGFBP-5.

Conclusion: Complexes of VN + IGFBP-5 + IGF-I enhance the attachment and migration of human osteoblast in three-dimensional culture, which implies that this complex has potential application for use in surface modification of biomaterials for tissue reconstruction.