The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed.Objectives
Methods
Despite consequent advancement in Total Knee Arthroplasty (TKA) up to 20% of patients are not satisfied after having been operated. Beside correct implantation, the design of the TKA-system is supposed to be a key factor of a successful TKA. Consequently it has been tried to restore natural kinematics by the design of the prosthesis. A medially stabilized design therefore is supposed to allow a lateral translation with a medial pivot. Our study compared posterior stabilized (PS) with medially stabilized (MS) TKA-design in terms of kinematics, femorotibial and patellofemoral contact patterns in vitro.Introduction
Objectives
Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back – a combination of movements which equates to tibial internal/ femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities.Objectives
Methods
Femorotibial malalignment exceeding ±3° is a recognised contributor of early mechanical failure after total knee replacement (TKR). The angle between the mechanical and anatomical axes of the femur remains the best guide to restore alignment. We investigated where the femoral head lies relative to the pelvis and how its position varies with respect to recognised demographic and anatomic parameters. We have tested the hypothesis of the senior author that the position of the centre of the femoral head varies very little, and if its location can be identified, it could serve to outline the mechanical axis of the femur without the need for sophisticated imaging. The anteroposterior standing, plain pelvic radiographs of 150 patients with unilateral total hip replacements were retrospectively reviewed. All patients had Tönnis grade 0 or 1 arthritis on the non-operated hip joint. All radiographs were obtained according to a standardised protocol. Using the known diameter of the prosthetic head for calibration, the perpendicular distance from the centre of the femoral head of the non-operated hip to the centre of pubic symphysis was measured with use of TraumaCad software. Anatomic parameters, including, but not limited to, the diameter of the intact femoral head, were also measured. Demographic data (gender, age, height, weight) were retrieved from our database.Introduction
Patients & Methods
This paper reports the angle between the EF and the horizontal (the extension facet angle- EFA) in normal knees and in knees with early AMOA.
A sagittal image at the midpoint of the femoral condyle was used to determine the EFA.
There is an association between an increased EFA (ie a steeper EF) and MRI evidence of AMOA. Although a causal link is not proven, we speculate that a steeper angle increases the duration of loading on the EF in stance and tibio-femoral interface shear. This may initiate cartilage breakdown.
This paper reports the angle between the EF and the horizontal (the extension facet angle - EFA) in normal knees and in knees with early AMOA.
A sagittal image at the midpoint of the femoral condyle was used to determine the EFA. Repeat measurements were taken by two observers.
There is an association between an increased EFA (ie a steeper EF) and MRI evidence of AMOA. Although a causal link is not proven, we speculate that a steeper angle increases the duration of loading on the EF in stance and tibio-femoral interface shear. This may initiate cartilage breakdown.