The objective of our study is to evaluate the accuracy of an X-ray based image segmentation system for patient specific instrument (PSI) design or any other surgical application that requires 3D modeling of the knee. The process requires two bilateral short film X-ray images of knee and a standing long film image of the leg including the hip and ankle. The short film images are acquired with an X-ray positioner device that is embedded with fiducial markers to correct for setup variation in source and cassette position. An automated image segmentation algorithm, based on a statistical model that couples knee bone shape and radiographic appearance, calculates 3D surface models of the knee from the bi-lateral short films (Imorphics, Manchester UK) (Figure 1). Surface silhouettes are used to inspect and refine the automatically generated segmentation; the femur and tibia mechanical axes are then calculated using automatically generated surface model landmarks combined with user-defined markups of the hip and ankle center from the standing long film (Figure 2). The accuracy of the 2D/3D segmentation system was evaluated using simulated X-ray imagery generated from one-hundred osteoarthritic, lower limb CT image samples using the Insight Toolkit (Kitware, Inc.). Random, normally distributed variations in source and cassette positions were included in the dataset. Surface accuracy was measured using root-mean-square (RMS) point-to-surface (P2S) distance calculations with respect to paired benchmark CT segmentations. Landmark accuracy was calculated by measuring angular differences between the 2D/3D generated femur and tibia mechanical tibia with respect to paired CT-generated landmark data. The paired RMS sample mean and standard deviation of femur P2S errors on the distal quarter of the femur after auto-segmentation was 1.08±0.20mm. The RMS sample mean and standard deviation of tibia P2S errors on the proximal quarter of the tibia after auto-segmentation was 1.16±0.25mm. The paired sample mean and standard deviation of the femur and tibia mechanical axis accuracy with respect to benchmark CT data landmarks were 0.02±0.42[deg] and −0.33±0.56[deg], respectively. Per surface-vertex sample RMS P2S errors are illustrated in Figure 3. Visual inspection of RMS results found the automatically segmented femur to be very accurate in the shaft, distal condyles, and posterior condyles, which are important for PSI guide fit and accurate planning. Similarly, the automatically segmented tibia was very accurate in the shaft and plateaus, which are also important for PSI guide fit. Osteophytes resulted in some RMS differences (Figure 3), as was expected due to the know limitations of osteophyte imaging with X-ray. PSI-type applications that utilize X-ray should account for osteophyte segmentation error. Overall, our results based on simulated radiographic data demonstrate that X-ray based 2D/3D segmentation is a viable tool for use in orthopaedic applications that require accurate 3D segmentations of knee bones.
Patients were reviewed clinically and completed questionnaires documenting pain, function and satisfaction before and after treatment at a mean follow-up of 44 months (range 14–131). All patient’s notes and radiographs were examined.
Complications included almost universal minor pin-site infections, flexion contractures of the toes in 5 feet and skin ulceration in 2 feet, 1 requiring a muscle flap.