Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 250 - 250
1 Jul 2011
Beaulé P Allen D Doucette S Ramadan O
Full Access

Purpose: Femoroacetabular impingement (FAI) has recently been described as a cause of adult hip pain and a precursor of hip osteoarthritis. Pincer type is secondary to acetabular retroversion or coxa profunda and Cam type is secondary to lack of concavity/offset of the antero-lateral femoral head-neck junction. Purpose of this study was to determine the prevalence of bilateral deformity in patients with cam type FAI as well as the presence of associated acetabular abnormalities.

Method: One hundred and thirteen patients with symptomatic cam impingement (alpha (α) angle of Notzli > 55.5°) of at least one hip were evaluated. Eighty-two males, 31 females with an average age of 37.9 yrs (16–55). Standardized AP pelvis and bilateral Dunn views were reviewed. Alpha angle of Notzli was measured on Dunn views. Cam impingement was defined by α angle > 55.5 on the Dunn view and Pincer impingement was defined by the presence of either acetabular retroversion or coxa profunda. Statistical analysis was done using the two tailed paired t-test, chi-square test and intra-class correlation coefficient. Odds Ratios were calculated using conditional logistic regression.

Results: Eighty-eight patients (77.8%) had bilateral deformity and 27% had symptoms in both hips. Mean α angles were higher for bilateral impingement deformity than for the impingement side only when unilateral deformity was present (72.10 versus 64.50, p< 0.001). Forty-four percent of hips with an impingement deformity also had a pincer deformity, either acetabular retroversion or coxa profunda. Painful hips had a statistically significant higher mean alpha angle than asymptomatic ones (69.70 versus 63.10, p< 0.001)). Comparing hips with α angles of 61–70 with those < 60 found an odds ratio of being painful of 2.59 (95% CI: 1.32–5.08, p=0.006). Hips with α angles > 71 had an odds ratio of being painful of 2.54 (95% CI: 1.3–4.96, p=0.007).

Conclusion: The majority of patients with cam type FAI have bilateral deformities and an associated acetabular deformity less commonly. The severity of the deformity at the femoral head neck junction is a significant determining factor for the development of hip symptoms. This information is important as we better define the natural history of this deformity as well as devise effective treatment strategies.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 258 - 258
1 Jul 2011
Lapner P Poitras P Ramadan O Kingwell S Russell D
Full Access

Purpose: Subacromial impingement syndrome is a painful condition which occurs during overhead activities as the rotator cuff is compressed between the greater tuberosity and the acromion. Unrecognized secondary causes of impingement syndrome may lead to treatment failure. Posterior capsular tightness, believed to alter shoulder joint kinematics, is often cited as a secondary cause but scientific evidence is lacking. The objective of this study was to evaluate the effect of posterior capsular tightness on pressure in the subacromial space.

Method: Ten fresh-frozen cadaver shoulder specimens were mounted on a custom testing apparatus. With the scapula fixed, the deltoid and cuff muscles were loaded statically with a constant ratio to elevate the humerus in the scapular plane under physiologic loading conditions. For each treatment (intact capsule, 1cm and 2cm plication), pressure in the subacromial space and glenohumeral kinematics were recorded during elevation. The treatment order was randomly assigned to each specimen. Peak pressure and translation of the humeral head center were compared using a repeated measures ANOVA.

Results: Peak subacromial pressures (mean±sd) were similar between treatment groups: 345±152 kPa, 410±213 kPa and 330±164 kPa for the intact, 1cm and 2cm plication respectively (p> 0.05). No significant differences were found for superior or antero-posterior translations of the humeral head at the peak pressure position (p> 0.05).

Conclusion: Posterior capsular tightness, as a sole variable, did not contribute significantly to increased pressure in the subacromial space or to increased anterior or superior humeral head translation during abduction. Clinically, posterior capsular tightness may occur in association with impingement syndrome but may not play a significant role in causation.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 100 - 100
1 Mar 2008
Hardisty M Bisland S Ramadan O Burch S Roth S Yee A Whyne C
Full Access

Photodynamic therapy (PDT) is a promising new treatment for spinal metastases; however, the effects of PDT on bone are largely unknown. This study assessed the impact of PDT on spinal stability in rats at high (non-therapeutic) drug and LASER light doses. Spinal stability was assessed using stereological measures attained from in vitro μCT scans. High doses of PDT were shown to cause a reduction in vertebral density. Postoperative paralysis was also noted in a subset of animals treated. Tumour-involved vertebrae are already mechanically weakened; as such it is essential to establish a safe and efficacious therapeutic window for vertebral PDT.

This study assessed the effect of high doses of photodynamic therapy (PDT) on biomechanical stability and bone density of lumbar vertebrae.

PDT can cause damage to the vertebral bone and induce paralysis when treatment is applied at very high doses in the rat spine.

PDT is a promising new treatment for spinal metastases however, it is important to understand its effect on vertebral bone in order to closely define the therapeutic window for safety and efficacy.

Trabecular bone density decreased from L1–L3 in normal, untreated rats. The L2 vertebra when treated with high dose PDT was shown to have decreased bone density as compared to both L1 and L3. As expected, tumour-bearing rats had lower vertebral densities than normals.

Rnu/Rnu rats were separated into normal controls, normals treated with PDT and tumour-bearing rats. Rats treated with PDT received an intercardiac injection of 2.5mg/Kg BPD-MA. The drug was activated through administration of 500J (300mA) of a non-thermal 690nm LASER adjacent to the L2 vertebral body. After one week, in vitro μCT scans were taken of L1–L3 and stereological quantities measured.

The demonstrated reduction of bone density as quantified one week following treatment is important when considering spinal stability in the potential use of PDT to treat vertebral metastases. We have observed that the therapy can induce paralysis when treatment is applied at high doses in the rat spine. The intermediate and long-term effects of PDT on bone remain unknown and require ongoing study.