A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within the bioinks without compromising the fidelity of the intended composite. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. This method preserves the resolution of printed structures by keeping low viscosity bioinks uncrosslinked during printing, which allows for the arrangement of magnetically-responsive microfibers without compromising the structural integrity of the design. Solidification is induced after the microfibers are arranged in the desired pattern. Furthermore, the precise design of these magnetic microfillers permits the utilization of low levels of inorganic materials and weak magnetic field strengths, which reduces the potential risks that may be associated with their use. The effectiveness of this approach is evaluated in the context of tendon tissue engineering, and the results demonstrate that combining the tendons like anisotropic fibrous microstructure with remote magneto-mechanical stimulation during in vitro maturation provides both biochemical and biophysical cues that effectively guide human adipose-derived stem cells towards a tenogenic phenotype In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications.
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels2 to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels. Immunostaining of tendon-related proteins presented analogous outcomes, corroborating our hypothesis. Our results thus demonstrate that microstructural cues and biological signals synergistically direct stem cell fate commitment, suggesting that this strategy holds potential for improving tendon healing and might be adaptable for other biological tissues. The proposed concept highlights the GF-sequestering ability of MINPs which allows a cost-effective alternative to recombinant GF supplementation, potentially decreasing the translational costs of tissue engineering strategies.
Relevant Porcine flexor tendons were decellularized to produce the dECM bioink hydrogel. hASCs were used as cell source and the bioink was directly printed within the CNC fluid gel. Tendon constructs were co-printed with compartmentalized microvascular structures to evaluate the cellular crosstalk with endothelial cells. The tendon-on-chip models showed high cell viability and proliferation during culture up to 21 days, and the synergy between dECM cues and printed patterns induced anisotropic cell organization similar to tendon tissues. Gene and protein analysis showed upregulation of the most important tendon related markers on tendon constructs, demonstrating that the biophysical and biochemical cues of dECM induced hASCs commitment toward tenogenic phenotype. In co-culture system, chemotaxis induced endothelial cells migration toward the tendon compartment, but without significant infiltration. Gene and protein expression results suggest that the cellular crosstalk established in this MPS with endothelial cells boosted hASCs tenogenesis, emulating tendon development stages. Overall, the proposed system might be promising for the automated fabrication of organotypic tendon-on-chip models that will be a valuable new tool to study tendon physiology, pathology, or the effect of drugs for the treatment of tendinopathy.
Gradients of three-dimensional (3D) hierarchical tissues are common in nature and present specific architectures, as this is the case of the anisotropic subchondral bone interfaced with articular cartilage. While diverse fabrication techniques based on 3D printing, microfabrication, and microfluidics have been used to recreate tailored biomimetic tissues and their respective microenvironment, an alternative solution is still needed for improved biomimetic gradient tissues under dynamic conditions with control over pre-vasculature formation. Here, we engineered a gradient osteochondral human-based tissue with precise control over both cell/tissue phenotype and pre-vasculature formation, which opens-up possibilities for the study of complex tissues interfaces, with broader applications in drug testing and regenerative medicine. The fabrication of 3D gradients of microparticles was performed combining methacrylated gelatin (GelMA) and gellan gum (GG) (3:1, w:w ratio) with hydroxyapatite microparticles (HAp, 30% w/w). The mixing of the interface was controlled by the temperature of two polymeric layers, being the second added at 10 ºC higher than the first one. This subsequent addition of polymeric solutions at different temperatures promoted convection, which drove the microparticles through the interface from the first to the second layered gel forming the HAp gradient. After ionic and photo-crosslinking, the freezing step was programmed using an external cover of styrofoam forcing the ice crystals to grow linearly, generating an anisotropic architecture in a gradient scaffold. A dual-chamber microreactor device was designed (figure 1A) to culture fat pad adipose-derived stem cells and microvascular endothelial cells under two biochemical microenvironments. Using control over temperature and crosslinking, hydrogel-like structures were built in 3D anisotropic HAp gradients. Then, an in vitro osteochondral tissue model was obtained using a dual-chamber platform. Results showed a significant difference of SOX9 (p < 0.05), Osteocalcin and RUNX2 (p < 0.05) from the top to the bottom regions of the 3D gradient structures under dynamic conditions. Finally, a pre-vasculature was controlled over 7 days, stimulating the endothelization of the subchondral bone-like region 35% more (p < 0.05) when compared to the cartilage-like region. In this work, microparticle and biochemical gradients were fabricated into anisotropic architectures. The obtained outcomes enable the precise control of 3D gradients in programmable architectures, such as anisotropic structures, with broad applications in interfaced tissue engineering, regenerative medicine and drug testing.
To repair soft tissue, it is vital to ensure that the biomaterial is able to mimic the complex elasticity of the native tissue. It has been demonstrated that substrate stiffness has a huge influence on cellular growth, differentiation, motility and phenotype maintenance. The goal of the present study is to characterize extensively a set of polymeric films with variable mechanical profiles. A range of synthetic biodegradable polymers was selected according to the physico-chemical intrinsic properties of aliphatic polymers. They have similar chemistry (absorbable polyesters made from lactic acid, glycolic acid, trimethylene carbonate, dioxanone & β-caprolactone), however show different mechanical and degradation properties. The films were manufactured by thermal presser and then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the films were assessed by uniaxial tensile tests in wet conditions and also by atomic force microscopy (AFM) to assess the material's stiffness at a micro-level.
Unresolved inflammatory processes in tendon healing have been related to the progression of tendinopathies. Thus, the management of tendon injuries may rely on cell-based strategies to identify and modulate tendon inflammatory cues. Pulsed electromagnetic field (PEMF) has been approved by FDA for orthopedics therapies and has been related to a reduction in pain and to improve healing. However, the influence of PEMF in tendon healing remains largely unknown. Human tendon resident cells (hTDCs) were cultured in an inflammatory environment induced by exogenous supplementation of IL-1β and their response assessed after exposure to different PEMF treatments. This study demonstrates that IL-1β induced up-regulation of pro-inflammatory factors (IL-6 and TNFα) and extracellular matrix components (
Tendon and ligament injuries represent highly prevalent and unmet clinical challenge that may significantly benefit from tissue engineering therapeutic strategies, once optimal cell source and biomolecules regulating tendon homeostasis are properly defined. Herein, we aimed to evaluate the expression of tendon/ligament markers in two novel cell populations, namely human dental pulp stem cells (DPSCs) and periodontal ligament cells (PDLCs), in response to supplementation with TGF-β ligands relevant for tendon development and healing, as well as under standard tri-lineage differentiation conditions. DPSCs and PDLCs were isolated from sound human permanent molars removed for orthodontic reasons. Pulp tissue and periodontal ligament were minced and digested with collagenase (3mg/mL) and cells were expanded in α-MEM supplemented with 10% fetal bovine serum (basal medium). To evaluate the susceptibility of DPSCs and PDLCs to tenogenic induction, cells were seeded at density of 1000 cells/cm2 and cultured up to 21 days in basal medium or media supplemented with TGF-β3 (10ng/ml), or GDF-5 (50 ng/ml). Cell response was evaluated weakly by analysis of expression of tendon, bone and cartilage markers, employing real time RT-PCR and immunocytochemistry. A significant increase in collagen I and collagen III expression was observed with the culture progression in all conditions, with abundant matrix being deposited by day 14. A significant upregulation of scleraxis expression was demonstrated in response to supplementation with TGF-β3 in both cell populations, when compared to basal medium and medium with GDF-5. It was concluded that TGF-β3 may represent an effective inducer of stem cell tenogenic differentiation.