Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells. For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed. We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored.
Common tendon injuries impair healing, leading to debilitation and an increased re-rupture risk. The impact of oxygen-sensing pathways on repair mechanisms, vital in regulating inflammation and fibrosis, remains unclear despite their relevance in tendon pathologies. Recent studies show that pulsed electromagnetic field (PEMF) reduce inflammation in human tendon cells (hTDCs) and in hypoxia-induced inflammation. We investigated the hypoxia's impact (1% and 2% oxygen tension) using magnetic cell sheet constructs (IL-1β-magCSs) primed with IL-1β. IL-1β-magCSs were exposed to low OT (1h, 4h,6h) in a hypoxic chamber. To confirm the role of PEMF (5Hz, 4mT, 50% duty cycle) on hypoxia modulation, IL-1β-magCSs, previously exposed to OT, were 1h-stimulated with PEMF. Our results show a significant increase in Overall, low OT enhances expression of hypoxia-associated genes and inflammatory markers in IL-1β-magCSs with the involvement of NFkB. PEMF modulates the response of magCSs, previously conditioned to hypoxia and to inflammatory triggers, favouring expression of anti-inflammatory genes and proteins, supporting PEMF impact in pro-regenerative tendon strategies.
RES Hub (Norte-01-0145-FEDER-022190).
MicroRNA (miR) delivery to regulate chronic inflammation hold extraordinary promise, with new therapeutic possibilities emanating from their ability to fine-tune multiple target gene regulation pathways which is an important factor in controlling aberrant inflammatory reactions in complex multifactorial disease. However, several hurdles have prevented advancements in miR-based therapies. These include off-target effects of miRs, limited trafficking, and inefficient delivery. We propose a magnetically guided nanocarrier to transport therapeutically relevant miRs to assist self- resolving inflammation processes at injury sites and reduce the impact of chronic inflammation- related diseases such as tendinopathies. The high prevalence, significant socio-economic burden and increasing recognition of dysregulated immune mediated pathways in tendon disease provide a compelling rationale for exploring inflammation-targeting strategies as novel treatments in this condition. By combining cationic polymers, miR species (e.g., miR 29a, miR155 antagonist), and magnetic nanoparticles in the form of magnetoplexes with highly efficient magnetofection procedures, we developed inexpensive, easy-to-fabricate, and biocompatible systems with competent miR-binding and fast cellular uptake into different types of human cells, namely macrophages and tendon-derived cells. The system was shown to be cell-compatible and to successfully modulate the expression and production of inflammatory markers in tendon cells, with evidence of functional pro-healing changes in immune cell phenotypes. Hence, magnetoplexes represent a simple, safe, and non-viral nanoplatform that enables contactless miR delivery and high- precision control to reprogram cell profiles toward improved pro-regenerative environments.
RES Hub (Norte-01-0145-FEDER-022190).
Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients. Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide. We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive nanoparticles to stimulate Mφ functions towards pro-regenerative phenotypes. Strategies with magnetically assisted systems include contactless presentation of immune-modulatory molecules, cell internalization of regulatory agents for functional programming via magnetofection, and multiple payload delivery and release. Overall, Mφ-oriented systems stimulated pro-regenerative functions of Mφ supporting magnetically assisted theranostic nanoplatforms for precision therapies, envisioning safer and more effective control over the distribution of sensitive nanotherapeutics for the treatments of chronical inflammatory conditions.
RES Hub (Norte-01-0145-FEDER-022190).
Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic nanoparticles (MNPs), it is possible to remotely induce the tenogenic differentiation of human adipose stem cells (hASCs). In this study, we investigated the tenogenic regenerative potential of remotely-activated MNPs-labelled hASCs in an in vivo rat model. We consider the potential for magnetic controlled nanoparticle mediated tendon repair strategies. hASCs were labelled with 250 nm MNPs functionalized with anti-Activin Receptor IIA antibody. Using a rapid curing fibrin gel as delivery method, the MNPs-labelled cells were delivered into a Ø2 mm rat patellar tendon defect. The receptor was then remotely stimulated by exposing the rats to a variable magnetic gradient (1.28T), using a customised magnetic box. The stimulation was performed 1 hour/day, 3 days/week up to 8 weeks. Tenogenesis, iron deposition and collagen alignment were assessed by histological staining and IHC. Inflammation mediators levels were assessed by ELISA and IHC. The presence of human cells in tendons after 4 and 8 weeks was assessed by FISH analysis. Histological staining showed a more organised collagen arrangement in animals treated with MNPs-labelled cells compared to the controls. IHC showed positive expression of tenomodulin and scleraxis in the experimental groups. Immunostaining for CD45 and CD163 did not detect leukocytes locally, which is consistent with the non-significant levels of the inflammatory cytokines analysis performed on plasma. While no iron deposition was detected in the main organs or in plasma, the FISH analysis showed the presence of human donor cells in rat tendons even after 8 weeks from surgery. Our approach demonstrates in vivo proof of concept for remote control stem cell tendon repair which could ultimately provide injectable solutions for future treatment. We are grateful for ERC Advanced Grant support ERC No.789119, ERC CoG MagTendon No.772817 and FCT grant 2020.01157.CEECIND.
Tissue engineering and regenerative medicine (TERM) hold the promise to provide therapies for injured tendons despite the challenging cues of tendon niche and the lack of specific factors to guide regeneration. The emerging potential of magnetic responsiveness and magnetic nanoparticles (MNPs) functionalities offers new perspectives to tackle TERM challenges. Moreover, pulsed electromagnetic field (PEMF) is FDA approved for orthopaedics with potential to control inflammation upon injury. We previously demonstrated that magnetic cell-sheets assisted by PEMF trigger the inflammation resolution by modulating cytokine-enriched environments [1]. To further understand the potential of magnetically assisted living patches, we have recently conducted in vivo studies using a rat patellar defect model. After labeling of human adipose stem cells with iron oxide MNPs for 16h, magCSs were cultured up to 3 days in α-MEM medium under non-magnetic or PEMF conditions. MagCSs were evaluated by immunocytochemistry, and real time RT-PCR for tendon markers. Cell metabolic activity was also assessed by MTS and ECM proteins quantified by Sirius Red/Fast Green. The MagCSs effect in ameliorating healing was assessed after implantation in window defects created in the patellar tendon of rats. PEMF was externally applied (3mT, 70Hz) 3d/week for 1h (magnetotherapy). After 4 and 8w, tendons were histologically characterized for immune-detection of tendon and inflammatory markers, and for Perls van Gieson and HE stains. Blood and detoxification organs were screened for inflammatory mediators and biodistribution of MNPs, respectively. In vitro results suggest that PEMF stimulates cellular metabolic activity, influences protein synthesis and the deposition of collagen and non-collagenous proteins is significantly increased compared to non-magnetic conditions. No adverse reactions, as infection or swelling, were observed after surgery or during follow-up. After 8w, magCSs remained at the implantation site and no MNPs were detected on detoxification organs. Plasma levels of IL1α, β, IL6 and TNFα assessed by multiplex assay were below detectable values (<12.5pg/ml). Thus, the combination of cell sheets and magnetic technologies hold promise for the development of living tendon substitutes. Acknowledgement to ERC-COG MagTendon772817, H2020 Achilles 810850, FCT - 2020.01157.CEECIND.
Unresolved inflammatory processes in tendon healing have been related to the progression of tendinopathies. Thus, the management of tendon injuries may rely on cell-based strategies to identify and modulate tendon inflammatory cues. Pulsed electromagnetic field (PEMF) has been approved by FDA for orthopedics therapies and has been related to a reduction in pain and to improve healing. However, the influence of PEMF in tendon healing remains largely unknown. Human tendon resident cells (hTDCs) were cultured in an inflammatory environment induced by exogenous supplementation of IL-1β and their response assessed after exposure to different PEMF treatments. This study demonstrates that IL-1β induced up-regulation of pro-inflammatory factors (IL-6 and TNFα) and extracellular matrix components (