Frailty has been gathering attention as a factor to predict surgical outcomes. However, the association of frailty with postoperative complications remains controversial in spinal metastases surgery. We therefore designed a prospective study to elucidate risk factors for postoperative complications with a focus on frailty. We prospectively analyzed 241 patients with spinal metastasis who underwent palliative surgery from June 2015 to December 2021. Postoperative complications were assessed by the Clavien-Dindo classification; scores of ≥ Grade II were defined as complications. Data were collected regarding demographics (age, sex, BMI, and primary cancer) and preoperative clinical factors (new Katagiri score, Frankel grade, performance status, radiotherapy, chemotherapy, spinal instability neoplastic score, modified Frailty Index-11 (mFI), diabetes, and serum albumin levels). Univariate and multivariate analyses were developed to identify risk factors for postoperative complications (p < 0.05).Aims
Methods
With recent progress in cancer treatment, the number of advanced-age patients with spinal metastases has been increasing. It is important to clarify the influence of advanced age on outcomes following surgery for spinal metastases, especially with a focus on subjective health state values. We prospectively analyzed 101 patients with spinal metastases who underwent palliative surgery from 2013 to 2016. These patients were divided into two groups based on age (< 70 years and ≥ 70 years). The Eastern Cooperative Oncology Group (ECOG) performance status (PS), Barthel index (BI), and EuroQol-5 dimension (EQ-5D) score were assessed at study enrolment and at one, three, and six months after surgery. The survival times and complications were also collected.Aims
Methods
Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM. Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.Objectives
Methods
Mesenchymal stem cells (MSCs) are identified by having the ability to differentiate into various tissues and typically used to generate bone tissue by a process of resembling intramembranous ossification, namely by direct osteoblastic differentiation. However, most bones develop by endochondral ossification, namely via remodeling of hypertrophic cartilaginous templates. To date, reconstruction of bone defects by endochondral ossification using mesenchymal stem cell-derived chondrocytes (MSC-DCs) have not been reported. The purpose of this study was to evaluate the effects of the transplantation of MSC-DCs on bone healing in segmental defects in rat femurs. Segmental bone defects (5, 10, 15-millimeter) were produced in the mid-shaft of the femur of the Fisher 344 rats and stabilised with an external fixator. Bone marrow was aspirated from the rat's femur and tibia at 4 weeks before operation. MSCs were isolated and grown in culture and seeded on a Poly dl-lactic-co glycolic acid (PLGA) scaffold. Subsequently, the scaffold was cultured using chondrogenic inducing medium for 21 days. The characteristics of the PLGA scaffold are radiolucent and to be absorbed in about 4 months. The Treatment Group received MSC-DCs, seeded on a PLGA scaffold, locally at the site of the bone defect, and Control Group received scaffold only. The healing processes were monitored radiographically and studied biomechanically and histologically.Introduction
Methods
It is well known that blood flow is a critical key component of fracture repair. Previously, we demonstrated that transcutaneous application of CO2 increased blood flow in the human body. To date, there has been no report investigating the effect of the carbonated therapy on fracture repair. We hypothesized that the transcutaneous application of CO2 to fracture site would accelerate fracture repair.Introduction
Hypothesis
The purpose of this study was to evaluate the effects of implantation of mesenchymal stem cell derived condrogenic cells (MSC-DC) on bone healing in segmental defects in rat femur. Five-millimeter segmental bone defects were produced in the mid-shaft of the femur of Fisher 344 rats and stabilized with external fixator. The Treatment Group received MSC-DC, seeded on a PLGA scaffold, locally at the site of the bone defect, and Control Group received scaffold only. The healing processes were monitored radiographically (Softex), and studied radiographically (Micro-CT) and histologically.Purpose
Methods
what size of defect is optimal for creating an atrophic nonunion animal model has not been well defined. Our aim in this study was to establish a clinically relevant model of atrophic nonunion in rat femur by creation of a bone defect to research fracture healing and nonunion. We used 30 male Fischer 344 rats (aged 10–11 weeks), which were equally divided into six groups. The segmental bone defects to a single femur in each rat were performed by double transverse osteotomy, and different sized defects were created by group for each group (1 mm, 2 mm, 3 mm, 4 mm, 5 mm and 6 mm). The defects were measured and maintained strictly by using an original external fixator. The periosteum for each defect was stripped both proximally and distally. Thereafter, these models were evaluated by radiology and histology. Radiographs were taken at baseline and at intervals of two weeks over a period of 8 weeks. Atrophic nonunion was defined as a lack of continuity and atrophy of both defect ends radiologically and histologically at eight weeks.Introduction
Materials and methods
Reconstruction of 10mm segmental bone defects in rat by mesenchymal stem cell derived chondrogenic cells (MSC-DC) Mesenchymal stem cell derived condrogenic cells (MSC-DC) have excellent potential for healing 5 mm bone defect in rat femur. To evaluate the effectiveness of MSC-DC on bone healing in 10 mm segmental bone defects in rat femur.Background
Purpose
The tension of a repaired rotator cuff was evaluated in nineteen patients who had a repair of a full thickness rotator cuff tear. The tension of the repaired cuff was measured at the operation using a simple spring scale. The tension was evaluated regarding the size of the tear, the duration of the symptom, the presence of trauma, and the post-operative results using a UCLA score. The average of the tension at the arm in 0, 30, and 60 degree elevations were 39.2±18.4N, 23.5±17.2N, and 14.2±13.4N respectively. The average tension of the patient who suffered from a trauma was 20.3±15.8N, whereas the one in the patients who had no history of trauma was 35.0 ±18.0N. The slight positive relation, not statistically significant, was found between the tension and the size of the tear. We could not find a significant relation between the tension and the range of motion or the muscle power in this study. The UCLA score was significantly higher in those patients who had less tension of a repaired rotator cuff. We have to be careful not to put too much tension on the rotator cuff when we repair it. Too much tension might damage the muscles and musclotendious units of the rotator cuff or fail to unite the cuff to the bone, resulting in dysfunction of the rotator cuff postoperatively. Then, how much is "too much"? Only a few papers have described the details of the tension of a repaired cuff. Our results show that the lower the UCLA score in patients with a higher tension of the repaired cuff. These results suggest that the tension of the repaired cuff, indeed, changes the results of a rotator cuff repair.