A key challenge for healthcare delivery in OECD countries is the projected significant increases in populations over the age of 65 years. Australia for example will experience an increase of 16.4% by 2015 while Canada will experience an increase of 16%, UK an increase of 17.9% and US an increase of 14.3% during the same time period (Australian Bureau of Statistics, 2010). Increases of such magnitude will have significant and far reaching implications for healthcare delivery, labour force participation, housing and demand for skilled labour (Australian Bureau of Statistics, 2010). Given the impending economic impact of providing healthcare services to this projected increase of seniors, examination of technology solutions that serve to provide effective and efficient healthcare delivery during the peri and postoperative care process are highly desired and help those desiring to age in place. Recent studies have demonstrated rapid growth in the number of seniors using computers in the US and other developed countries and is projected to increase further (Jimison et al., 2006). This technology adoption leads to further growth in the potential for health monitoring technologies (Clifford and Clifton, 2012) with the key aim being the maintenance of a seniors' autonomy through understanding how he or she can manage his or her individual health problem and what necessary actions should be taken and when (Ludwig et al., 2012). Projections by the Congressional Budget Office for Social Security, Medicare, and Medicaid transfers as a percentage of GDP show the share of output spent on seniors' care programs in US rising from 7.6% in 2000 to 13.9% in 2030 to 21.1% in 2075 (Zhang et al., 2009, Falls, 2008). Despite the increased number of home monitoring technologies in age care contexts, there are several challenges that have to be met before integrating such services into the practice, as a real-life application (Ludwig et al., 2012). As the incidence of arthroplasty surgery is projected to increase over six fold between 2010 and 2030 in the US (Kurtz, Ong, Lau, Mowat, & Halpern, 2007), the post arthroplasty period represents a challenging environment for the adoption of new monitoring technologies to optimize the rehabilitative and recovery process. This study develops a framework for post-arthroplasty monitoring through the application of the intelligence continuum (Wickramasinghe and Schaffer, 2006) to the post-arthroplasty care process including an analysis of the risks and complications. The benefits, barriers and critical elements of designing the theory based framework for home-monitoring technologies provides the structural framework for clinical application of the monitoring modalities. The entire arthroplasty process is included in order to provide appropriate management governance (figure 1) with the following metrics:
Improving post-operative quality by continuous monitoring of risk factors at home Reducing the number of unplanned emergency room visits and readmissions Optimizing rehabilitation costs by developing / expanding alternative home care delivery methodologies Increasing post arthroplasty value and decreasing hospital post-operative costs.