Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 84 - 84
1 Dec 2019
Kramer T Schröder C Noeth U Krause R Schmidt B Stephan D Scheller E Jahn F Gastmeier P
Full Access

Aim

Periprosthetic joint infections (PJI) and surgical site infections (SSI) are one of the most severe complications in joint arthroplasty. Decolonization measures prior to elective orthopedic surgeries have shown to reduce the risk of infection especially in patient identified as carriers of S. aureus. However additional screening measures can be difficult to implement in daily routine.

The objective was to study the influence of universal decolonization with polihaxanid on SSI rates.

Method

Between January 2017 and December 2018 patients scheduled for hip or knee joint arthroplasty in 5 participating orthopedic centers received polyhexanid containing decolonization set consisting of oral, nasal and wipes. Patients were instructed to perform a 5 day decolonization regimen 4 days prior to surgery. SSIs were recorded according to modified CDC criteria for a surveillance period of 90days after surgery.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 46 - 46
1 Apr 2018
Woiczinski M Ingr K Steinbrück A Weber P Schröder C Müller PE Jansson V
Full Access

Wear is an important factor in the long term success of total knee arthroplasty. Therefore, wear testing methods and machines become a standard in research and implant development. These methods are based on two simulation concepts which are defined in standards ISO 14243-1 and 14243-3. The difference in both concepts is the control mode. One is force controlled while the other has a displacement controlled concept.

The aim of this study was to compare the mechanical stresses within the different ISO concepts. Furthermore the force controlled ISO was updated in the year 2009 and should be compared with the older which was developed in 2001.

A finite element model based on the different ISO standards was developed. A validation calculated with kinematic profile data of the same implant (Aesculap, Columbus CR) in an experimental wear test setup (Endolap GmbH) was done. Based on this model all three different ISO standards were calculated and analysed.

Validation results showed Pearson correlation for anterior posterior movement of 0.3 and for internal external rotation 0.9. Two main pressure maximums were present in ISO 14243-1:2001 (force controlled) with 17.9 MPa and 13.5 MPa for 13 % and 48 % of the gait cycle. In contrast ISO 14243-1:2009 (force controlled) showed three pressure maximums of 18.5 MPa (13 % of gait cycle), 16.4 MPa (48 % of gait cycle) and 13.2 MPa (75 % of gait cycle). The displacement controlled ISO (14243-3:2014) showed two pressure maximums of 16.0 MPa (13 % of gait cycle) and 17.2 MPa (48 % of gait cycle).

The adapted force controlled ISO of the year 2009 showed higher mechanical stress during gait cycle which also might lead to higher wear rates. The displacement controlled ISO leads to higher mechanical stress because of the constraint at the end of the stance phase of the gait cycle. Future studies should analyse different inlay designs within these ISO standards.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 84 - 84
1 Sep 2012
Schröder C Utzschneider S Grupp T Fritz B Jansson V
Full Access

Introduction

Minimally invasive implanted unicompartmental knee arthroplasty (UKA) leads to excellent functional results. Due to the reduced intraoperative visibility it is difficult to remove extruded bone cement particles, as well as bone particles generated through the sawing. These loose third body particles are frequently found in minimally invasive implanted UKA.

The aim of this study was to analyse the influence of bone and cement particles on the wear rate of unicompartmental knee prostheses in vitro.

Material & Methods

Fixed- bearing unicompartmental knee prostheses (n = 3; Univation F®, Aesculap, Tuttlingen) were tested with a customized four-station servo-hydraulic knee wear simulator (EndoLab GmbH, Thansau, Germany) reproducing exactly the walking cycle as specified in ISO 14243-1:2002. After 5.0 million cycles crushed cortical bone chips were added to the test fluid for 1.5 million cycles to simulate bone particles, followed by 1.5 million cycles blended with PMMA- particles (concentration of the third-body particles: 5g/l; particle diameter: 0.5- 0.7 mm). Every 500 000 cycles the volumetric wear rate was measured (ISO 14243-2) and the knee kinematics were recorded.

For the interpretation of the test results we considered four different phases: breaking in- (during the first 2.0 million cycles), the steady state- (from 2.0 million to 5 million cycles), bone particle- and cement particle phase.

Finally, a statistical analysis was carried out to verify the normal distribution (Kolmogorov-Smirnov test), followed by direct comparisons to differentiate the volumetric wear amount between the gliding surfaces (paired Student's t-test, p<0.05).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 256 - 256
1 Sep 2012
Weber P Schröder C Utzschneider S Jansson V Müller P
Full Access

Introduction

Unicompartmental knee arthroplasty (UKA) in patients with isolated medial osteoarthritis of the knee is nowadays a standard procedure with good results, especially with the minimally-invasive approach. However, the survival rate of the unicompartmental knee prostheses is inferior to that of total knee prostheses. Therefore, further studying of UKA is still necessary. In most mobile bearing designs the femoral component has a spherical surface and therefore its positioning is not crucial. The role of the tibial slope in UKA has not been investigated so far. The manufacturers recommend tibial slopes with values between 10° positive slope and 5° negative slope. Most surgeons try to reconstruct the anatomical slope with a high failure by measuring the slope on x-rays. The aim of this study was to investigate the influence of the tibial slope on the wear rate of a medial UKA.

Materials and methods

In vitro wear simulation of medial mobile bearing unicompartmental knee prosthesis with a spherical femoral surface (Univation ®) was performed with a customized four-station servo-hydraulic knee wear simulator (EndoLab GmbH, Thansau, Germany) reproducing exactly the walking cycle as specified in ISO 14243–1:2002(E). The tibial tray was inserted with 2 different medial tibial slopes: 0°, 8° (n=3 for each group). The lateral tibial slope of the space-holder was not changed (0° for every group). We performed a total of 5 million cycles for every different slope, the gravimetric wear rate was determined gravimetrically using an analytical balance every 500 000 cycles according to the ISO 14243–2.