We estimated the prevalence of people living with at least one hip, knee, or shoulder arthroplasty in the Netherlands. We included the first hip (n = 416,333), knee (n = 314,569), or shoulder (n = 23,751) arthroplasty of each patient aged ≥ 40 years between 2007 and 2022 (hip/knee) or 2014 and 2022 (shoulder) from the Dutch Arthroplasty Register (LROI). Data on the size of the Dutch population were obtained from Statistics Netherlands. Annual incidences and deaths from hip and knee arthroplasty since 2010, and shoulder arthroplasty since 2015, were observed from the LROI. Annual incidences and deaths before those years were estimated using Poisson regression analyses and parametric survival models based on a Gompertz distribution. Non-parametric percentile bootstrapping with resampling was used to estimate 95% CIs.Aims
Methods
Controversy persists over whether cemented or uncemented fixation is more effective in reducing revision and mortality risks following primary total hip arthroplasty (THA). Despite a shift towards uncemented THA in Europe, Australia, and the US, no consensus exists on superior outcomes. This ambiguity in evidence from randomized controlled trials (RCTs) and observational studies necessitates advanced research methodologies to derive more definitive conclusions. This study investigates the causal impact of THA fixation type on 2-year and 5-year revision rates, along with 90-day mortality, utilizing a regression discontinuity (RD) design in scenarios where fixation choice is guided by patient age. Employing data from the Dutch Arthroplasty Register, we conducted a cohort study on primary THAs for osteoarthritis from 2007 to 2019. A “fuzzy” RD design was executed to compute the Local Average Treatment Effect for subjects around the age-based selection threshold for fixation type. The main outcome of interest was the revision rate at 2 years post-operation. Analysis for the 2-year revision endpoint, covering any cause, included 2,344 females and 1,671 males across 5 hospitals each, with no significant variation in revision rates observed. For the 5-year mark, 1,058 females in 3 hospitals and 214 males in 1 hospital were examined, similarly showing no significant differences. Mortality within 90 days post-operation was also investigated in 5 female and 7 male cohorts, with 2,180 and 2,145 surgeries respectively, yielding no substantial disparities. In conclusion, the RD analysis revealed no notable differences in revision rates at 2 and 5 years or in early mortality based on the fixation method used in THA. These outcomes suggest that the age-based preference for THA fixation may not influence the revision or mortality risk, underscoring the value of RD design in deriving causal insights from observational data.
Although data on uncemented short stems are available, studies on cemented short-stemmed THAs are limited. These cemented short stems may have inferior long-term outcomes and higher femoral component fracture rates. Hence, we examined the long-term follow-up of cemented short Exeter stems used in primary THA. Within the Exeter stem range, 7 stems have a stem length of 125 mm or less. These stems are often used in small patients, in young patients with a narrow femoral canal or patients with anatomical abnormalities. Based on our local database, we included 394 consecutive cemented stems used in primary THA (n=333 patients) with a stem length ≤125 mm implanted in our tertiary referral center between 1993 and December 2021. We used the Dutch Arthroplasty Registry (LROI) to complete and cross-check the data. Kaplan-Meier survival analyses were performed to determine 20-year survival rates with stem revision for any reason, for septic loosening, for aseptic loosening and for femoral component fracture as endpoints. The proportion of male patients was 21% (n=83). Median age at surgery was 42 years (interquartile range: 30–55). The main indication for primary THA was childhood hip diseases (51%). The 20-year stem survival rate of the short stem was 85.4% (95% CI: 73.9–92.0) for revision for any reason and 96.2% (95%CI: 90.5–98.5) for revision for septic loosening. No stems were revised for aseptic femoral loosening. However, there were 4 stem fractures at 6.6, 11.6, 16.5 and 18.2 years of follow-up. The stem survival with femoral component fracture as endpoint was 92.7% (CI: 78.5–97.6) at 20 years. Cemented short Exeter stems in primary THA show acceptable survival rates at long-term follow-up. Although femoral component fracture is a rare complication of a cemented short Exeter stem, orthopaedic surgeons should be aware of its incidence and possible risk factors.
To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration. We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.Aims
Methods
This study aimed to investigate the estimated change in primary and revision arthroplasty rate in the Netherlands and Denmark for hips, knees, and shoulders during the COVID-19 pandemic in 2020 (COVID-period). Additional points of focus included the comparison of patient characteristics and hospital type (2019 vs COVID-period), and the estimated loss of quality-adjusted life years (QALYs) and impact on waiting lists. All hip, knee, and shoulder arthroplasties (2014 to 2020) from the Dutch Arthroplasty Register, and hip and knee arthroplasties from the Danish Hip and Knee Arthroplasty Registries, were included. The expected number of arthroplasties per month in 2020 was estimated using Poisson regression, taking into account changes in age and sex distribution of the general Dutch/Danish population over time, calculating observed/expected (O/E) ratios. Country-specific proportions of patient characteristics and hospital type were calculated per indication category (osteoarthritis/other elective/acute). Waiting list outcomes including QALYs were estimated by modelling virtual waiting lists including 0%, 5% and 10% extra capacity.Aims
Methods
Recent reports implicate fretting corrosion at the head-stem taper junction as a potential cause of failure of some large diameter metal-on-metal (MOM) devices. Fretting observed at modular junctions is thought to be a type of ‘mechanically assisted’ corrosion phenomenon, initiated by mechanical factors that lead to an increase in contact stresses and micromotions at the taper interface. These may include: intra-operative taper assembly, taper contamination by debris or body fluids, patient weight and ‘toggling’ of the head or increased frictional torque in a poorly functioning bearing. We adopted a finite element approach to model the head-taper junction, to analyze the contact mechanics at the taper interface. We investigated the effect of assembly force and angle on contact pressures and micromotions, during loads commonly used to test hip implants. Models of the Biomet Type-1 taper, a 60 mm head and a taper adaptor were created. These models were meshed with a mesh size based on a mesh density convergence study. Internal mesh coarsening was applied to reduce computational cost. Elastic-plastic material properties based on tensile tests were assigned to all titanium components. The contact conditions used in the FE analyses were validated against push-on and pull-off experiments, resulting in a coefficient of friction of 0.5. To analyze micromotions at the taper-adaptor connection, the models were loaded with 2300N (ISO 7206-4) and 5340N (ISO 7206-6), after being assembled with 2-4-15 kN, axially and under a 30º angle. This ISO standard is commonly used to determine endurance properties of stemmed femoral components. Micromotions and contact pressures were analyzed by scoring them to an average micromotion and average contact pressure for the surface area in contact.Introduction
Materials and methods
Recent reports have implicated fretting corrosion at the head-stem taper junction as a potential cause of failure of some large diameter metal-on-metal (MOM) devices. While it has been suggested that larger MOM heads, may induce greater frictional torques at the taper connection, the exact mechanisms underlying fretting corrosion remain poorly understood. It is likely that the onset of the corrosion process is caused by mechanical factors, such as contact stresses and micromotions occurring at the interface. These stresses and micromotions depend on the fixation of the head onto the stem and may be affected by blood, fat, bone debris or other contaminations. The fixation of the head is achieved intraoperatively through impaction. To further study this phenomenon, we adopted a finite element approach in which we modeled the head-taper junction fixation mechanics. In this model, we analyzed the effect of impaction force on the micromotions occurring at the head-stem interface. We created a model of a BIOMET Type-1 taper and an adapter that is typically used for larger heads. Titanium alloy material properties were assigned to both components, and frictional contact (μ = 0.5) was simulated between the adapter and the taper. To ensure that the model accurately represented the contact mechanics, we first simulated experiments in which the head was assembled on the taper in a load-controlled manner, at different load (4 and 15 kN), after which it was disassembled axially. The disassembly loads predicted by the FEA simulations were then compared to the experimental values. After ensuring a correct prediction of the disassembly loads, we used various impaction loads (2, 4, and 15 kN) to assemble the taper, after which a 2.3 kN load (ISO 7206-4) was applied to the adapter/taper assembly. This loading regime is commonly used to determine endurance properties of stemmed femoral components. Under these loading conditions, we then analyzed the contact stresses and micromotions, and the effect of impaction load on these quantities.Introduction
Materials and methods
These days, total hip arthroplasties (THA) are more implanted in young patients. Due to the expected lifespan of a THA and the life expectancy of young patients, a future revision is inevitable. Indirectly increasing the number of revisions in these patients. Therefore we evaluated the results of revision THA in patients under the age of 60 years. However, we used a unique protocol in which we used in all cases of acetabular and/or femoral bone deficiencies reconstruction with bone impaction grafting. To determine the mid- to longterm results of cemented revision total hip arthroplasties in patients under the age of 60, all clinical data and radiographs were analyzed of patients operated between 1992 and 2005. Patients with multiple previous revisions were also included. Only cemented components were used. During this period 146 consecutive revision total hip arthroplasties were implanted in 129 patients. This included 124 cup and 106 stem revisions. The average age at index surgery was 47 years. No case was lost. Mean follow-up was 7.6 (range, 2.0–16.7) years.Background
Methods
Total hip arthroplasties in younger patients often requires revision because these patients frequently have acetabular deficiencies, which hamper proper implantation of the cup essential for good long-term prosthesis survival. For 30 years, we have used a biological acetabular-reconstruction technique with bone-impaction grafting in all patients <50 years with an acetabular deficiency at surgery, always in combination with a cemented total hip implant. We evaluated all 150 consecutive patients (177 hips) < 50 years with an acetabular reconstruction by bone-impaction grafting surgically-treated from 1978–2004 at our clinic. Mean follow-up was 10.3 (range, 2.0–28.3) years with no patient lost to follow-up. Mean index surgery age was 38.1 (range, 16–49) years. Clinical, radiological, and statistical analysis of all patients was performed.Introduction
Methods
Surgeons always must take into account that a primary total hip arthroplasty (THA) in a young patient will be revised in the future, this because of the long life expectancy of young THA patients and the limited durability of prosthetic implants in these patients. Therefore we would like to accentuate the revisability of a primary THA in this specific and high demanding patient population. 343 consecutive THA in 267 patients under the age of 50 years were evaluated. We also assessed the results of the revised THA (n=53) within the same population. Clinical, radiographical and survival of primary and revision THA were evaluated.Background
Methods
The Kaplan-Meier estimation is widely used in orthopedics to
calculate the probability of revision surgery. Using data from a
long-term follow-up study, we aimed to assess the amount of bias
introduced by the Kaplan-Meier estimator in a competing risk setting. We describe both the Kaplan-Meier estimator and the competing
risk model, and explain why the competing risk model is a more appropriate
approach to estimate the probability of revision surgery when patients
die in a hip revision surgery cohort. In our study, a total of 62 acetabular
revisions were performed. After a mean of 25 years, no patients
were lost to follow-up, 13 patients had undergone revision surgery
and 33 patients died of causes unrelated to their hip.Objectives
Methods
Especially in young patients, total hip implants with proven long-term follow-up data should be used. Despite this, almost all patients under 30 years old will face a revision of their hip prosthesis during their life time because of their life expectancy. Therefore, all the used implants should be revisable with reliable outcome. Although, several studies have evaluated the outcome of different THA implants in patients under 30, only few report the long term follow-up of 10 years or more. None of them present the outcome of the revised total hips. We retrospectively reviewed prospectively collected data of 48 consecutive patients (69 hips), all received a cemented implant and in case of acetabular bone stock deficiency (29 hips), a reconstruction with bone impaction grafting (BIG) was performed. Mean age at surgery was 24.6 years (range, 16.0–29.0 years). Two patients were lost to follow-up. As far as we know, no revisions are performed in these two patients and their data are included in the study up to their last radiographic control. All failed hips were revised with again cemented implants and, if needed, bone impaction grafting. For the primary THA Kaplan-Meier survival curves at 10- and 15-year endpoint revision for any reason and revision for aseptic loosening were calculated. Separate survival rates at 10- and 15- year were calculated for the BIG group versus the non-BIG group. The outcome of the revised hips was studied and reported with re-revision as the endpoint.Introduction
Methods
Total hip arthroplasties (THAs) in young patients are associated with high failure rates. We always use cemented total hip implants, however, in cases with acetabular bone stock loss we perform bone impaction grafting. Our purpose was to evaluate the outcome of 69 consecutive primary cemented total hips in patients younger than 30 years followed between 2 to 18 years. Between 1988 and 2004, 69 consecutive primary cemented THAs (mainly Exeters) were performed in 48 patients (32 women, 16 men) younger than thirty years. Average age at time of operation was 25 years (range, 16 to 29 years). Twenty-nine hips (42%) underwent acetabular bone impaction grafting because of acetabular bone loss. Mean follow-up was 10 years (range, 2 to 18 years). Revisions were determined, Harris Hip Score (HHS), and Oxford Hip Questionnaire Score (OHQS) were obtained and radiographs were analyzed. Survival was calculated using the Kaplan-Meier method.Introduction
Methods
Also, five cefazolin and vancomycin solutions were used to impregnate bone chips and to make dose-response curves. Furthermore, 1 gram bone chips was impregnated with 5ml cefazolin or 5ml vancomycin solution.
We investigated the feasibility of using porous titanium particles (TiP) to reconstruct femoral bone defects in revision hip replacement surgery in stead of using morzelised bone grafts. Questions regarding handling, initial stability and titanium particle release were addressed. Seven composite femurs (Sawbones) were reamed and filled, stepwise, with 32 grams of large (Ø 3.15 – 4 mm) and 9 grams of smaller (Ø 2.8 – 3.15 mm) pure, 85% porous TiP. Subsequently an Exeter stem was cemented into the graft layer. All reconstructions were loaded axially (0–3000 N) for 300,000 loading cycles at 2 Hz. Subsidence of the stem was measured with radio stereometric analysis (RSA) and possible titanium particle release was measured using the laser diffraction technique. The TiP were impacted into a >
3 mm (SD 1.43 mm) thick, highly entangled, graft layer. An average cement mantle of >
2 mm (SD 0.86 mm) was measured and little cement penetration was observed. The average subsidence of only 0.45 mm (SD 0.04 mm) was measured after 300 000 loading cycles. Most titanium particles were found directly after impaction. Most of these particles (87%) were smaller than 10 μm and could therefore be potentially harmful since they can induce osteolysis. We can conclude that:
A graft layer of impacted TiP can be constructed, The graft layer is stable enough to initially support a cemented Exeter stem, Titanium particles are released during impaction. These data warrant further animal tests to assess the biological response to these released impaction particles. Also, animal tests should clarify possible particle release upon loading and its effects.