Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 150 - 150
1 Apr 2005
Mountney J Senavongse W Amis A Thomas N
Full Access

Purpose The tensile strength of the isolated Medial Patellofemoral Ligament (MPFL) is unknown. The strength required of reparative or reconstructive procedures to re-constitute this major patella stabilising structure are therefore unknown.

Method 10 fresh cadaveric right (6 female 4 male) knees, mean age 71.6 (SD 16.6) years, were prepared to isolate the MPFL between the patella and the Medial Femoral Condyle (MFC). The tensile strength and mode of failure were then determined.

The ligament was then repaired using a suture and the tensile strength of this determined. The ligament was then reconstructed in three ways including: Biodegradable corkscrew anchors and two tendon techniques with interference screws. One method used a blind tunnel into the MFC, while the other passed through a tunnel in the femoral condyles. Both methods passed through tunnels in the patella.

Results The mean ultimate tensile strength of the isolated MPFL was 207.9 (SD 90.1) Newtons. Seven specimens failed through a mid-substance tear while three pulled off the MFC.

The mean strength of the suture repair was 36.7 (SD 26.5) Newton. The biodegradable bone anchor gave a mean strength of 142.3 (SD 38.5) Newton. The blind tunnel hamstring reconstruction’s had a mean strength of 126 (SD 20.8) Newton. The double tunnel hamstring reconstruction’s failed at a mean of 195.0 (SD 65.6) Newton.

Conclusion The force required to rupture an isolated MPFL appears to be approximately 210 Newton. Suture repair is insufficient to reconstitute this. Reconstruction with bone anchors or hamstring tendon techniques come close to this.