Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To

Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. Quality of cartilaginous repair tissue following BMSC transplantation has been shown to correlate with functional outcome. Therefore, tissue-engineering variables, such as cell expansion environment and seeding density of scaffolds, are currently under investigation. The objectives of this study were to demonstrate chondrogenic differentiation of BMSCs seeded within a collagen I scaffold following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments, and assess the impact of seeding density on in vitro chondrogenesis. It was hypothesised that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 million cells/cm3.

Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing expansion medium, and seeded within collagen I scaffolds (6 mm diameter, 3.5 mm thickness and 0.115 ± 0.020 mm pore size; Integra LifeSciences Corp.) at densities of 50, 10, 5, 1, and 0.5 million BMSCs/cm3. For 3D isolation and expansion, bone marrow aspirates containing known quantities of mononucleated cells (BMNCs) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 million BMNCs/cm3 and cultured in expansion medium for an equivalent duration to 2D expansion. All cell-scaffold constructs were differentiated in vitro in chondrogenic medium containing transforming growth factor-beta three for 21 days and assessed with RT-qPCR, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification.

Two dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II mRNA relative to pre-differentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5–10 million BMSCs/cm3. Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5–10 million BMSCs/cm3 based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/DNA. For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5–50 million BMNCs/cm3, while collagen II deposition occurred in scaffolds seeded at 10–50 million BMNCs/cm3. The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 million BMNCs/cm3.

Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5–10 million BMSCs/cm3 and 50 million BMNCs/cm3, respectively. Accordingly, these densities could be considered when seeding collagen I scaffolds in BMSC transplantation protocols.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 66 - 66
1 Sep 2012
Adesida A Matthies N Sierra A Jomha NM
Full Access

Purpose

The biomechanical role of the meniscus in the knee joint is a function of its extracellular matrix which consists of type I collagen throughout, type II collagen in the inner meniscus region and glycosaminoglynated (GAG) proteins of which aggrecan is the most prevaleet. Meniscus reparative capacity is limited, particularly when a defect is located in the inner avascular portion, and menisectomy predisposes the joint to osteoarthritis. Using meniscus cells in tissue engineering strategies has been advocated to generate functional meniscus substitutes. However, meniscus cells, like chondrocytes of cartilage, lose their matrix-forming phenotype during culture expansion. Co-culture of chondrocytes with stem cells has been shown to result in enhanced matrix formation. We hypothesized that meniscus cells in co-culture with stem cells will result in increased matrix formation.

Method

Tissue specimens were obtained after approval of the local ethical committee and informed consent. Menisci were obtained from 3 patients undergoing total knee arthroplasty; (53–84; mean age 66.6). Meniscus cells were isolated after digestion of menisci with collagenase II. Isolated meniscus cells were plated for 24–48 hr before use. Bone marrow aspirates were obtained from the iliac crest of 3 donors: 1 female (46) and 2 males (15 and 21) undergoing routine orthopaedic procedures. Plastic adherent bone marrow stromal cell populations were isolated and expanded under normal oxygen tension of 21%O2 in a-MEM growth media plus FGF-2 until passage 2. Cells were mixed at a variety of meniscus cells (Men): BMSC ratio including 5/95, 10/90 and 25/75, respectively. Mixed cells were centrifuged to form spherical pellets followed by culture in a defined serum free chondrogenic differentiation medium. Control groups were pure Men and pure BMSCs. Total cell number per pellet was 25×104. Pellets were cultured for 3 weeks under normal oxygen tension. Thereafter, pellets were processed: biochemically for GAG and DNA content, and histologically for Safranin-O staining of sulphated GAG and immunohistochemical analyses for collagen types I and II. Analysis was performed on a minimum of 2 independent pellets.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 62 - 62
1 Sep 2012
Adesida A Sierra A Jomha NM
Full Access

Purpose

Bone marrow multi-potent stromal cells represent a heterogenous source of cells with great promise in joint cartilage regenerative medicine. However, due to their low numbers upon harvesting, MSCs need to be expanded without compromising their capacity to form chondrocytes (cartilage cells). To date there is no consensus on how to expand MSCs in order to maximize their potential for cartilage repair and nor are there any specific cell signatures of MSCs with chondrogenic propensity. Emerging evidence suggest that marrow stem cells exist in a hypoxic microenvironment. On this basis and in addition to cartilages natural existence in hypoxic environment (1–7% O2), we hypothesized that MSC expansion under hypoxia will result in the enrichment of MSCs with predilection to chondrocytes compared to expansion under the conventional culture conditions of 21% O2.

Method

Bone marrow was harvested from the iliac crest of 4 donors (mean age 43.5 years) post informed consent and local ethical approval. Fifteen million mono-nucleated (MNCs) cells were seeded into T150cm2 culture flasks in the presence of alpha MEM plus 10% FBS and 5 ng/ml FGF2. Similarly, 0.25 million MNCs were seeded in 10cm petri dishes for colony forming unit-fibroblastic (CFU-f) assay. The seeded flasks and petri dishes were cultured under normoxia (21% O2) and hypoxia (3% O2). Petri dished cells were cultured for 14 days and those in flasks were cultured until passage 2 (P2). Developed cell colonies per dish were revealed after crystal violet staining. Colony counts and diameters were recorded. P2 cells were treated with a panel of antibodies for cell surface marker analysis by fluorescent activated cell sorting (FACS) flow cytometry. P2 cell pellets were formed and induced towards cartilage in a defined serum free medium containing TGFβ1. Pellets were cultured for 3 weeks under normoxia and were then processed for histological, biochemical and gene expression analyses.