Scoliosis is estimated to occur between 21–64% of patients with cerebral palsy (CP), where a subset of patients develops early onset scoliosis (EOS) before the age of ten. Traditional growth friendly (TGF) surgeries in the context of traditional growing rods have been shown to be effective in treating scoliosis in this population, however significant complication rates are reported. Currently, no studies have been done to examine the effect of novel growth friendly surgeries such as magnetically controlled growing rods (MCGR) on EOS in CP patients. The objective of this study is to compare MCGR with TGF surgeries in this patient population, specifically by evaluating radiographic measurements and risk of unplanned reoperations (UPRORs). Patients with EOS secondary to CP were prospectively identified from an international database, with data retrospectively analyzed. Scoliosis (primary curve), maximum kyphosis, T1-S1 and T1-T12 height were measured pre-operation, immediate post-operation, and at two-years follow-up. The risk and etiology of UPRORs were compared between MCGR and TGF. P < 0.05 was considered statistically significant for all analyses. Of the 120 patients that met inclusion criteria, 86 received TGF (age 7.5 ± 1.8 years; follow-up 7.0 ± 2.9 years) and 34 received MCGR (age 7.1 ± 2.2 years, follow-up 2.8 ± 0.5 years). Compared to TGF, MCGR resulted in significant improvements in maintenance of scoliosis correction (p=0.04). At final follow-up, UPRORs were 24% for MCGR (8/34 patients) and 43% (37/86 patients) for TGF (p=0.05). To minimize the influence of follow-up period, UPRORs within the first two years post-operation were evaluated: MCGR (21%, 7/34 patients) vs. TGF (14%, 12/86 patients; p=0.37). Within the first two years, etiology of UPROR as a percentage of all patients per group were deep infection (5% TGF, 6% MCGR), implant failure/migration (5% TGF, 9% MCGR), dehiscence (2% TGF, 3% MCGR), and superficial infection (1% TGF, 3% MCGR). The most common etiology of UPROR for TGF was deep infection and implant failure/migration and for MCGR was implant failure/migration. For patients with CP, at final follow-up, MCGR had superior maintenance of scoliosis correction; however, there was no difference in risk of UPROR within the first two years post-operatively (21% MCGR, 14% TGF).
Intrathecal morphine (IM) is a common adjunct in paediatric spinal deformity surgery. We previously demonstrated with idiopathic scoliosis it provides safe and effective analgesia in the immediate postoperative period. This study represents our 25 year experience with IM in all diagnostic groups. Our prospective Pediatric Orthopaedic Spine Database (1993–2018) was reviewed to identify all patients undergoing spinal deformity surgery who received IM and who did not. Patients 21 years of age or less who had a posterior spinal fusion (PSF) with segmental spinal instrumentation (SSI), and received 9–19 mcg/kg (up to 1 mg) of IM were included. Early onset scoliosis surgical patients were excluded. We assessed demographics, pain scores, time to first dose of opioids, diagnoses, surgical time, paediatric intensive care unit (PICU) admission and IM complications (respiratory depression, pruritus, nausea/ vomiting). There were 986 patients who met inclusion criteria. This included 760 patients who received IM and 226 who did not. IM was not used for short procedures (< 3 hrs), respiratory concerns, unsuccessful access of intrathecal space, paraplegia, and anesthesiologist decision. Both groups followed the same strict perioperative care path. The patients were divided into 5 diagnostic groups (IM / non IM patients): idiopathic (578/28), neuromuscular (100/151), syndromic (36/17), and congenital scoliosis (32/21) and kyphosis (14/9). Females predominated over males (697/289). The first dose of opioids after surgery was delayed for a mean of 10.6 hrs in IM group compared to 2.3 hrs in the non-IM group (p=0.001). The postoperative pain scores were significantly lower in the IM groups in the Post Anesthesia Care Unite (p=0.001). Only 17 IM patients (2%) were admitted to the PICU for observation secondary to respiratory depression, none required re-intubation. None of the IM group were re-intubated. Forty-nine patients (6%) experienced pruritus in the IM group compared to 4 of 226 patients (2%) in the non IM group. There were 169 patients (22%) of the IM patients and 21 patients (9%) of the non IM had nausea and vomiting postoperatively. Three patients (0.39%) had a dural leak from the administration of IM but did not require surgical repair. There were no other perioperative complications related to the use of IM. There were no significant group differences. Pre-incision IM is a safe and effective adjunct for pain management in all diagnostic groups undergoing spinal surgery. The IM patients had lower pain scores and a longer time to first administration of post-operative opioids. Although there is an increased frequency of respiratory depression, pruritus, and nausea/vomiting in the IM group, there were no serious complications.
Unstable slipped capital femoral epiphysis (SCFE) has an increased incidence of avascular necrosis (AVN). The purpose of this study was to determine if early identification and intervention for AVN may help preserve the femoral head. We retrospectively reviewed 48 patients (50 hips) with unstable SCFE managed between 2000 and 2014. Based on two different protocols during the same time period, 17 patients (17 hips) had a scheduled MRI between 1 and 6 months from initial surgery, with closed bone graft epiphysiodesis (CBGE) or free vascularised fibular graft (FVFG) if AVN was diagnosed. Thirty-one patients (33 hips) were evaluated by plain radiographs. Outcomes analysed were Steinberg classification and subsequent surgical intervention. We defined Steinberg class IVC as failure in treatment because all of the patients referred for osteotomy, arthoplasty, or arthrodesis in our study were grade IVC or higher. Overall, 13 hips (26%) with unstable SCFE developed AVN. MRI revealed AVN in 7 of 17 hips (41%) at a mean of 2.5 months postoperatively (range, 1.0 to 5.2 months). Six hips diagnosed by MRI received surgical intervention (4 CBGE, 1 FVFG, and 1 repinning due to screw cutout) at a mean of 4.1 months (range, 1.3 to 7.2 months) postoperatively. None of the 4 patients treated with CBGE within two months postoperatively progressed to stage IVC AVN. The two patients treated after four months postoperatively both progressed to stage VC AVN. Radiographically diagnosed AVN occurred in 6 of 33 hips (18%) at a mean of 6.8 months postoperatively (range, 2.1 to 21.1 months). One patient diagnosed with stage IVB AVN at 2.4 months had screw cutout and received CBGE at 2.5 months from initial pinning. The remaining 5 were not offered surgical intervention. Five of the 6 radiographically diagnosed AVN, including the one treated with CBGE, progressed to stage IVC AVN or greater. None of the 4 patients with unstable SCFE treated with CBGE within 2 months post pinning developed grade IVC AVN, while all patients treated with other procedures after 2 months developed IVC or greater AVN. Early detection and treatment of AVN after SCFE may alter the clinical and radiographic progression.