Ultra-High Molecular Weight Polyethylene (UHMWPE) wear debris is thought to be a main factor in the development of osteolysis (1). However, the method for the evaluation of the biological response to UHMWPE particles has not yet been standardized. In this study, four different types of UHMWPE particles were generated using a mechanized pulverizing method and the biological responses of macrophages to the particles were investigated using an inverted cell culturing process (2). Virgin samples were manufactured via Direct Compression Molding (DCM) technique from UHMWPE GUR1050 resin powder (Ticona, USA). For vitamin E (VE)-blended sample, the resin was mixed with VE at 0.3 wt% and the mixture was then molded using DCM. The crosslinked virgin samples were made by gamma ray irradiation to UHMWPE GUR1020 resin sheet (Meditech, USA) with doses of 95kGy ±10% and annealed. The VE-blended crosslinked samples were made by electron beam irradiation to VE-blended samples with doses of 300kGy and annealed. The material conditions were summarized in Figure 1. To pulverize the samples, the Multi-Beads Shocker (Yasui Kikai, Japan) was used. After pulverization, samples were dispersed in an ethanol solution and sequentially filtered through polycarbonate filters. Over 100 sections of the filter were selected randomly and images of the particles were analyzed using scanning electron microscope (SEM). To analyze the macrophage biological response, an inverted cell culturing process was used (2). The mouse macrophage-like cells were seeded at densities of 4×105cells per well in a 96-well culture plate and incubated for 1h. UHMWPE particles suspended in the culture medium were then added to each well in the appropriate amount. After that, fresh medium was added to fill the wells, and a sealing film was used to cover the culture plate. The culture plate was then inverted to cause the UHMWPE particles interact with the adhered macrophages. The inverted culture plate was incubated for 8h. The amount of TNF-α was measured by enzyme-linked immunosorbent assay (ELISA).INTRODUCTION
MATERIALS & METHODS
Cone Based CT (CBCT) scanning uses a point source and a planar detector with parallel data acquisition and volumetric coverage of the area of interest. The pedCAT (Curvebeam USA) scanner is marketed as a low radiation dose, compact, faster and inexpensive CT scanner that can be used to obtain both non- weightbearing and true 3 dimensional weightbearing views. A review of the first 100 CBCT scanning in our unit has been performed to assess ease of scanning, imaging time, radiation dose and value of imaging as opposed to conventional imaging.Introduction:
Method:
UHMWPE resin powder (GUR 1050, Ticona, USA) was mixed with Background
Materials & Methods
Vitamin-E (VE)-blended UHMWPE has been developed as a bearing-surface material due to the antioxidant ability of VE and has demonstrated a low wear rate in knee simulator [1]. Additionally, in vitro biological response testing has revealed that wear particles from VE blended UHMWPE induce the secretion of inflammatory cytokines at significantly lower levels compared to conventional UHMWPE [2]. However, as the joint kinematics are different between the knee and the hip, it is not guaranteed that these improvements will be repeated in the hip. In this study, the wear resistance of VE-blended UHMWPE was evaluated in knee and hip simulator tests and the effects of VE concentration and electron-beam irradiation were investigated. VE blended samples (GUR_VE xx%) were manufactured via direct compression molding following the blending of UHMWPE resin powder with VE at several concentrations (0, 0.1, 0.3, 1.0%). Cross-linking for the VE samples was achieved by 10 MeV electron beam at several irradiance doses (30, 90, 300 kGy) and annealed below the melting point of UHMWPE. Knee and hip simulator testing were carried out according to ISO 14243 and ISO 14242, respectively, and the volumetric wear was calculated. The gel fraction was determined by measuring the weight of the samples before and after soaking in decahydronaphthalene at 150°C. The oxidative resistance of the material was determined by measuring the Oxidation Index (OI) following ASTM F2102 before and after compulsory aging (ASTM2003). Radical measurements were made using high-sensitivity X-band ESR.Introduction
Materials and Methods
Repair of chronic Achilles tendon rupture is technically complex. Flexor jallucis longus (FHL) and peroneus brevis (PB) tendon transfers have been described, but the mechanical properties of these tissues have not been well reported. The FHL, PB and tendo achilles (TA) tendons were harvested from 17 fresh frozen human cadavers free of gross pathology (mean age 69 years). Samples were tested in uniaxial tension at 100% per minute. Samples were secured using special jigs for the bony aspect or by freezing the tendons in cryogrips using liquid carbon dioxide. The peak load (N), linear stiffness (N/mm) and energy to peak load (N*mm) were determined. Mechanical data was analysed using one way analysis of variance (ANOVA) followed by a Games Howell multiple comparison post-hoc test. Fifty one tendons were harvested and mechanical testing was successfully completed in all samples apart from one PB that slipped from the grips during testing (sample was omitted from the analysis). The mean ultimate loads differed for each group, with the TA tendons being the strongest (1724.5 N ± 514.3) followed by FHL (511.0 N ± 164.3) and PB (333.1 N ± 137.2) (P<
0.05). Similar results were found with respect to energy, with TA tendons absorbing the most energy followed by FHL and PB (P<
0.05). Stiffness for the TA tendons (175.5 N/mm ± 94.8) was greater than FHL (43.3 N/mm ± 14.1) and PB (43.6 N/mm ± 18.9), which did not differ from each other. FHL is stronger than PB, but have similar stiffness. The mechanical properties of PB and FHL were both inferior to TA. Graft stiffness appears to be an important variable rather than ultimate load based on the clinical success of both techniques.
The use of intramedullary column screws in the treatment of acetabular fractures is becoming more widely utilized. The development of percutaneous methods to insert these screws under image intensifier guidance is one of the main reasons for their increased use. Few groups are navigating insertion of these screws. The available screws are cannulated 6.5–8 mm screws. Most surgeons prefer using 3.2 mm guide wires to reduce deflection. With a shank diameter of 4.5 mm, 3.2 mm cannulation significantly weakens the screws. We postulated that both columns, specially the posterior column can accommodate larger screw diameters which will increase the stability of fixation allowing earlier full weight bearing. The currently used screws were designed for fixation of femoral neck fractures. As percutaneous fixation of acetabular fractures is a growing area of interest, this warrants designing suitable screws with larger diameters. Eight CT scans of the adult pelvis –performed for non fracture related indications-, were studied (7 females, 1 male). We found that the anatomical cross-section of the columns is irregular but approximately triangular. The method we used to determine the largest diameter of a screw to fit each column was fitting cylinders in the columns. Robin’s 3D software was used to segment acetabula and convert the CT data into polygon mesh (stereolithography STL format) bone surfaces at an appropriate Hounsfield value. The resulting STL files were imported in Robin’s Cloud software, where polygon mesh cylinders of 10 mm diameter were fitted in each column. These cylinders were then manipulated to achieve best fit and their diameters were gradually increased to the biggest diameter which still fitted in the column. The mean diameters of the fitted cylinders were 10.8 mm (range: 10–13mm) and 15.2 mm (range 14–16.5mm) for the anterior and posterior columns respectively. To our knowledge, this is the first investigation to study the cross sectional dimensions of the anterior and posterior columns of the acetabulum. Our small sample shows that both columns can safely accommodate larger screws than those currently used. We plan to investigate this further using cadavers.
Acetabular and pelvic fractures are amongst the most challenging to treat, still requiring major open surgery. The operations to reduce and fix them entail lengthy operative time, significant blood loss and use of ionising radiation. We report on the initial stages of developement of a minimally invasive method for navigated reduction and percutaneous fixation of acetabular fractures (NRFA). A commercial navigation platform (Acrobot Ltd.) will be adapted for use with this technique. CT based planning will be used to identify the correct realignment of the the bone fragments, which will then be reduced percutaneously with the aid of two tracked arms attached to the navigation system. Schanz pins, which are inserted in pre-operatively planned sites in each fragment using safe trajectories, are handled as joysticks to manipulate the fracture under computer assistance. Registration of the fragments after insertion of the joysticks will be carried out by means of fluoroscopic images of the AP and Judet views of the fractured acetabulum. Once reduction is achieved by following on-screen instructions, the joysticks are held in place by a custom clamping system connected to one of the arms, while the other is used for percutaneous insertion of column screws. This technique is potentially suitable for a number of acetabular fractures which include transverse, anterior column, posterior column, T-fractures and some associated both columns fractures. These constitute over 50% of Letournel’s and 60% of Matta’s original series of acetabular fractures. Furthermore, this percutaneous technique could reduce bleeding, wound complications, hospital stay and cost of treatment. Intra operative ionising radiation would be greatly reduced for both patients and the surgeons. Adequate training with the use of this software may provide a greater number of surgeons the capability to surgically treat these complex fractures.