Little is known about the relationship between head-neck corrosion and its effect on the periprosthetic tissues and distant organs of patients hosting well-functioning devices. The purpose of this study was to investigate in postmortem retrieved specimens the degree and type of taper damage, and the corresponding histologic responses in periprosthetic tissues and distant organs. Fifty postmortem THRs (34 primaries, 16 revisions) retrieved after 0.5 to 26 years were analyzed. Forty-three implants had a CoCrMo stem and seven had a Ti6Al4V stem. All heads were CoCrMo and articulated against polyethylene cups (19 XLPE, 31 UHMWPE). H&E sections of joint pseudocapsules, liver, spleen, kidneys and lymph nodes were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue characteristics. Corrosion damage of the taper surfaces was assessed using visual scoring and quantitated with an optical coordinate measuring machine. SEM analysis was used to determine the acting corrosion mode. Polyethylene wear was assessed optically. The majority of tapers had minimal to mild damage characterized by local plastic deformation of machining line peaks. Imprinting of the stem topography onto the head taper surface was observed in 18 cases. Column damage on the head taper surface occurred in three cases. All taper surfaces scored moderate or severe exhibited local damage features of fretting and/or pitting corrosion. Moderate or severe corrosion of the head and/or trunnion was present in nine hips. In one asymptomatic patient with bilateral hips, lymphocyte-dominated tissue reactions involving perivascular infiltrates of lymphocytes and plasmacytes were observed. In this patient, mild, focal lymphocytic infiltrates were also present in the liver and kidneys, and there was focal histiocytosis and necrosis of the para-aortic lymph nodes. These two implants, which had been in place for 58.6 and 60.1 months, had severe intergranular corrosion of the CoCrMo trunnion, and column damage and imprinting on the head taper. In the other 41 hips, macrophage responses in the joint pseudocapsule to metallic and/or polyethylene wear particles ranged widely from minimal to marked. Focal necrosis in the pseudocapsules of 12 arthroplasties was related to high concentrations of CoCrMo, TiAl4V, TiO, BaSO4 and polyethylene wear particles. High concentrations of these particles were also detected in para-aortic lymph nodes. Rare to mild macrophages were observed in liver and spleen. This is a comprehensive study of wear and corrosion within well-functioning postmortem retrieved THRs, and the resulting local and distant tissue reactions. One of eight patients with moderate or severe corrosion did have a subclinical inflammatory response dominated by lymphocytes after five years. To what extent such an inflammatory process might progress to become symptomatic is not known. Ionic and particulate products generated by corrosion disseminated systemically. The minor lymphocytic infiltrate in the liver and kidneys of one subject with bilateral severely corroded head-neck junctions might suggest possible metal toxicity. The diagnosis of adverse tissue reactions to corrosion of modular junctions can be challenging. Postmortem retrieval studies add to our understanding of the nature and progression of lymphocyte-dominated adverse local and potentially systemic tissue reactions to corrosion of modular junctions.
Wear and corrosion debris generated from total hip replacements (THR) can cause adverse local tissue reactions (ALTR) or osteolysis, often leading to premature implant failure. The tissue response can be best characterized by histopathological analysis, which accurately determines the presence of cell types, but is limited in the characterization of biochemical changes (e.g. protein conformation alteration). Fourier transform infrared micro-spectroscopy imaging (FTIRI) enables rapid analysis of the chemical structure of biological tissue with a high spatial resolution, and minimal additional sample preparation. The data provides the most information through multivariate method carried out by hierarchical clustering analysis (HCA). It is the goal of this study to demonstrate the beneficial use of this multivariate approach in providing pathologist with biochemical information from cellular and subcellular organization within joint capsule tissue retrieved from THR patients. Joint capsule tissue from 2 retrieved THRs was studied.
The results demonstrate that multivariate FTIRI based spectral histopathology is a powerful tool to characterize the chemical structure and foreign body response within periprosthetic tissue, thus providing insights into the biological impact of different types of implant debris. For any figures or tables, please contact the authors directly.
The lifetime of total hip replacements (THR) is often limited by adverse local tissue reactions to corrosion products generated from modular junctions. Two prominent damage modes are the imprinting of the rougher stem topography into the smoother head taper topography (imprinting) and the occurrence of column-like troughs running parallel to the taper axis (column damage). It was the purpose of this study to identify mechanisms that lead to imprinting and column damage based on a thorough analysis of retrieved implants. 776 femoral heads were studied. Heads were visually inspected for imprinting and column damage. Molds were made of each head taper and scanned with an optical coordinate measuring machine. The resulting intensity images were used to visualize damage on the entire surface. In selected cases, implant surfaces were further analyzed by means of scanning electron microscopy (SEM) and white light interferometry. The alloy microstructure was characterized for designs from different manufactures.INTRODUCTION
METHODS
Little is known about the relationship between head-neck corrosion and its effect on periprosthetic tissues and distant organs in the majority of patients hosting apparently well-functioning devices. We studied the degree and type of taper damage and the histopathologic response in periprosthetic tissue and distant organs. A total of 50 contemporary THRs (34 primary, 16 revision) retrieved postmortem from 40 patients after 0.4–26 years were studied. Forty-three femoral stems were CoCrMo and 7 were Ti6Al4V. In every case, a CoCrMo-alloy head articulated against a cementless polyethylene cup (19 XLPE and 31 UHMWPE). H&E and IHC sections of the joint pseudocapsules and liver were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue necrosis. The nature of the tissue response in the joint capsule, liver, spleen, kidneys and lymph nodes was assessed. Wear and corrosion products in the tissues were identified using SEM and EDS. Taper surfaces were graded for corrosion damage using modified Goldberg scoring and examined by SEM to determine the acting corrosion mode. Correlations between damage scores and the histologic variables were generated using the Spearman test.Introduction
Methods
There are increasing reports of total hip replacement (THR) failure due to corrosion within modular taper junctions, and subsequent adverse local tissue reactions (ALTRs) to corrosion products. Modular junction corrosion is a multifactorial problem that depends on material, design, patient and surgical factors. However, the influence of alloy microstructure on corrosion has not been studied sufficiently. Especially for cast CoCrMo, there are concerns regarding microstructure variability with respect to grain size and hard-phase volume fraction. Therefore, it was the goal of this study to (1) identify different types of microstructures in contemporary implants, and (2) determine implications of alloy microstructure on the occurring corrosion modes. Fifteen surgically retrieved femoral stems made from cast CoCrMo alloy were analyzed for this study. Damage on the taper surfaces was investigated by scanning electron microscopy (SEM) and damage was assessed with the Goldberg Score. The alloy microstructure was evaluated by standard metallographic techniques. Alloy samples were sectioned off the femoral stem, and microstructural features were visualized by chemical etching. Cyclic potentio-dynamic polarization tests were carried out with alloy samples from two implants with different commonly occurring types of microstructures. Both had a similar grain size, but type 1 had no hard-phases, where as type 2 exhibited hard-phases along the grain boundaries, as well as intra-granular hard-phase clusters. Tests were performed in bovine serum at 37°C with a saturate calomel reference electrode and a graphite counter electrode. In vitro generated corrosion damage was then compared to in vivo generated damage features on the taper surfaces of the corresponding implants.Introduction
Methods
There is renewed concern surrounding the potential for corrosion at the modular head-neck junction to cause early failure in modern hip implants. Although taper corrosion involves a complex interplay of many factors, previous studies have correlated decreasing flexural rigidity of the femoral trunnion with an increased likelihood of corrosion at retrieval. A multicenter retrieval analysis of 85 modular femoral stems was performed to calculate the flexural rigidity of various femoral trunnions. Stems were implanted between 1991–2012 and retrieved between 2004–2012. There were 10 different taper designs from 16 manufacturers. Digital calipers were used to measure taper geometries by two independent observers. Mean flexural rigidity was 262 Nm2, however there was a wide range of values among the various stems spanning nearly an order of magnitude between the most flexible (80 Nm2) and most rigid (623 Nm2) trunnions, which was due in part to the taper geometry and in part to the material properties of the base alloy. There was a modest but significant negative correlation between flexural rigidity of the trunnion and release date of the stem. This wide variability in flexural rigidity may predispose particular stem designs to an increased risk of corrosion at the modular head-neck taper, and may in part explain why taper corrosion is being seen with increasing frequency in modern hip arthroplasty.
Taper corrosion at modular junctions can cause a spectrum of adverse local tissue reactions (ALTR) in the periprosthetic soft tissues in patients who have undergone total hip arthroplasty (THA). Because these reactions are usually painful, taper corrosion has become part of the differential diagnosis of hip pain following THA. However these destructive lesions may not always cause pain, and can occasionally result in other atypical presentations. The purpose of this study is to describe a cohort of patients presenting with late and recurrent instability following THA due to underlying ALTR and taper corrosion. This is a multicenter retrospective case series of fourteen patients presenting with late instability secondary to ALTR and corrosion at the modular head-neck taper. The cohort included nine women and five men with a mean age of 66.8 years (range, 49 to 74). All patients had a metal (CoCr)-on-polyethylene bearing surface, but had a range of CoCr and Ti-alloy stem designs from three different manufacturers. Seven patients had 28 mm heads, while the rest had 32–40 mm heads. Patients experienced a mean of 3.4 dislocations (range, 2 to 6) at an average of 5.2 years (range, 0.4 to 17.0) following their index surgery. Although most reported some degree of discomfort around the hip, instability was the primary presenting symptom in all fourteen patients, and four were otherwise completely asymptomatic. Serum metal levels demonstrated a greater elevation of cobalt (mean 3.13 ng/mL) than chromium (mean 2.33 ng/mL). Preoperative infection workup including serum inflammatory markers and a hip aspiration documented the absence of sepsis.Introduction
Methods