Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 105 - 105
1 Mar 2021
Lesage R Blanco MNF Van Osch GJVM Narcisi R Welting T Geris L
Full Access

During OA the homeostasis of healthy articular chondrocytes is dysregulated, which leads to a phenotypical transition of the cells, further influenced by external stimuli. Chondrocytes sense those stimuli, integrate them at the intracellular level and respond by modifying their secretory and molecular state. This process is controlled by a complex interplay of intracellular factors. Each factor is influenced by a myriad of feedback mechanisms, making the prediction of what will happen in case of external perturbation challenging. Hampering the hypertrophic phenotype has emerged as a potential therapeutic strategy to help OA patients (Ripmeester et al. 2018). Therefore, we developed a computational model of the chondrocyte's underlying regulatory network (RN) to identify key regulators as potential drug targets

A mechanistic mathematical model of articular chondrocyte differentiation was implemented with a semi-quantitative formalism. It is composed of a protein RN and a gene RN(GRN) and developed by combining two strategies. First, we established a mechanistic network based on accumulation of decades of biological knowledge. Second, we combined that mechanistic network with data-driven modelling by inferring an OA-GRN using an ensemble of machine learning methods. This required a large gene expression dataset, provided by distinct public microarrays merged through an in-house pipeline for cross-platform integration.

We successfully merged various micro-array experiments into one single dataset where the biological variance was predominant over the batch effect from the different technical platforms. The gain of information provided by this merge enabled us to reconstruct an OA-GRN which subsequently served to complete our mechanistic model. With this model, we studied the system's multi-stability, equating the model's stable states to chondrocyte phenotypes. The network structure explained the occurrence of two biologically relevant phenotypes: a hypertrophic-like and a healthy-like phenotype, recognized based on known cell state markers. Second, we tested several hypotheses that could trigger the onset of OA to validate the model with relevant biological phenomena. For instance, forced inflammation pushed the chondrocyte towards hypertrophy but this was partly rescued by higher levels of TGF-β. However, we could annihilate this rescue by concomitantly mimicking an increase in the ALK1/ALK5 balance. Finally, we performed a screening of in-silico (combinatorial) perturbations (inhibitions and/or over-activations) to identify key molecular factors involved in the stability of the chondrocyte state. More precisely, we looked for the most potent conditions for decreasing hypertrophy. Preliminary validation experiments have confirmed that PKA activation could decrease the hypertrophic phenotype in primary chondrocytes. Importantly the in-silico results highlighted that targeting two factors at the same time would greatly help reducing hypertrophic changes.

A priori testing of conditions with in-silico models may cut time and cost of experiments via target prioritization and opens new routes for OA combinatorial therapies.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 118 - 118
1 Mar 2021
Jeuken R Roth A Peters M Welting T Rhijn L Thies J Emans P
Full Access

Focal knee resurfacing implants (FKRIs) are typically intended to treat focal cartilage defects in middle-aged patients. All currently available FKRIs are (partly) composed of metal, which potentially leads to degeneration of the opposing articulating cartilage and hampers follow-up using magnetic resonance imaging (MRI). The purpose of this study was to investigate the in vivo osseointegration process of a novel non-degradable thermoplastic polycarbonate-urethane (TPU) osteochondral implant. Bi-layered implants measuring 6 mm in diameter, with a double-curvature to match the approximate curvature of the goat medial femoral condyle were fabricated. TPU implants were composed of an articulating Bionate® II 80A top layer, and a Bionate® 75D bottom layer (DSM Biomedical, Geleen, the Netherlands) which is intended to osseointegrate. A biphasic calcium phosphate coating formulation, optimized during a prior in vitro study, was applied to half of the TPU implants, while the other half was left uncoated. Bi-layered metal implants (articulating cobalt-chromium top layer and titanium bottom layer) were used as positive control implants. Eight implants per group were implanted bilaterally in the medial femoral condyle of the stifle joints in 12 Dutch milk goats. 18F-sodium fluoride (18F-NaF) positron emission tomography-computed tomography (PET-CT) scanning was performed at 3 and 12 weeks postoperatively, and the corrected maximum standard uptake values (cSUVmax) was calculated to assess the peri-implant bone metabolism. After sacrifice 12 weeks postoperatively, bone histomorphometric analysis was performed to assess the bone-to-implant contact area (BIC). Student's T-test was used in case of normal distribution and the Mann-Whitney-U-test was used in case of abnormal distribution for comparison of BIC and cSUVmax. The BIC value of 10.27 ± 4.50% (mean ± SD) for the BCP-coated TPU implants was significantly (P=0.03) higher than the 4.50 ± 2.61% for the uncoated TPU implants. The uncoated TPU implants scored significantly (P=0.04) lower than the BIC of 12.81 ± 7.55% for the metal implants, whereas there was no significant difference between BCP-coated TPU implants and the metal implants (P=0.68). There was a strong correlation between the cSUVmax values and the BIC values at 12 weeks (Pearson's R=0.74, P=0.001). The cSUVmax values significantly decreased between 3 and 12 weeks for the metal implants (p=0.04). BCP-coated TPU implants followed a similar trend but did not reach statistical significance (p=0.07). cSUVmax in the uncoated TPU implants did not show a significant difference between the time-points (p=0.31). Osseointegration of BCP-coated TPU implants did not significantly differ from metal implants. 18F-NaF PET-CT is a feasible modality to assess osseointegration patterns and showed a similar trend between the BCP-coated and metal implants. Hence, an implant fully composed of TPU may avoid the typical metal-related drawbacks of currently available FKRIs. Long-term follow-up studies are advocated to address the effects of the implant to the opposing cartilage, and are therefore warranted.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 18 - 18
1 Apr 2018
Caron M Janssen M Peeters L Surtel D van Rhijn L Emans P Welting T
Full Access

INTRODUCTION

The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted hypertrophic differentiation of the generated tissue due to endochondral ossification. Continuing on our earlier studies, our goal is to further improve the engineering of hyaline cartilage for the treatment of a cartilage defect in our in vivo model for subperiosteal generation of cartilage, by tuning the differentiation status of the generated cartilage and prevent hypertrophic differentiation. As a healthy cartilage matrix contains high amounts of aggrecan we hypothesise that aggrecan supplementation of the bio-gel used in the generation of the subperiosteal cartilage, mimics the composition of the extracellular matrix environment of cartilage with potential beneficial properties for the engineered cartilage.

METHODS

A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded (n=7) or supplemented (n=7) with 2% (w/v) bovine aggrecan (Sigma-Aldrich). After 14 days, rabbits were euthanised. Generated subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry was performed for key markers of different phases of endochondral ossification.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 21 - 21
1 Apr 2018
Caron M Castermans T van Rietbergen B Haartmans M van Rhijn L Witlox A Welting T
Full Access

INTRODUCTION

Endochondral ossification in the growth plate is directly responsible for skeletal growth and its de novo bone-generating activity. Growth plates are vulnerable to disturbances that may lead to abnormal skeletal development. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used analgesics but have been reported to impair endochondral ossification-driven fracture healing. Despite the general awareness that NSAIDs affect endochondral ossification, the consequences of NSAIDs on skeletal development are unknown. We hypothesise that the NSAID celecoxib leads to impaired growth plate development and consequently impairs skeletal development.

METHODS

Healthy skeletally immature (5 weeks old) C57BL/6 mice were treated for ten weeks with celecoxib (daily oral administration 10 mg/kg) or placebo (water) (institutional approval 2013–094) (n=12 per group). At 15 weeks postnatally, total growth plate thickness, the thickness of specific growth plate zones, (immuno)histological analysis of extracellular matrix composition in the growth plate, cell number and cell size, longitudinal bone growth and bone micro-architecture by micro-CT were analysed. Inhibition of COX-2 activity was confirmed by determining PGE2 levels in plasma using an ELISA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 33 - 33
1 Apr 2018
Timur UT Emans P van Rhijn L Welting T
Full Access

Introduction

Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in skeletal development. It is expressed mainly in prechondrocytic mesenchymal condensations. Patients with mutations in the CART-1 gene display several craniofacial abnormalities, suggesting that CART-1 has a functional role in craniofacial skeletal development. However, its target genes and position in the established chondrogenic pathways is poorly documented. Given the fact that CART-1 is expressed predominantly in the chondrocyte lineage and its role in skeletal development, we hypothesized that CART-1 regulates expression of several pivotal genes involved in chondrogenic differentiation.

Methods

The coding sequence of human CART-1 was custom synthesized with optimized codon usage and cloned into a p3XFLAG-CMV-7.1 expression vector. FLAG-CART-1 was transiently overexpressed in SW1353 cells by polyethyleneimine-mediated transfection (1,000 ng of plasmid/well in 12-well plates). FLAG-Empty vector was used as a negative control. FLAG-CART-1 overexpression was confirmed by means of anti-FLAG immunoblotting. To investigate a potential connection between CART-1 and established key chondrogenic pathways, TGFβ3 (10 ng/mL) was added to SW1353 cells in CART-1 overexpression cultures or their appropriate controls. Cells were harvested 48 hours after transfection and mRNA expression of several genes involved in chondrogenic differentiation was determined by qRT-PCR. Data represent three separate experiments performed in technical triplicate.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2018
Caron M Janssen M Peeters L Surtel D Koole L van Rhijn L Welting T Emans P
Full Access

INTRODUCTION

The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted ossification of the generated tissue due to endochondral ossification. Our in vitro data show that celecoxib is able to suppress the hypertrophic differentiation phase of endochondral ossification in differentiating human bone marrow stem cells via inhibition of prostaglandin signalling. Continuing on our earlier studies our goal is to further improve the engineering of hyaline cartilage for the treatment of cartilage defects, by determining if celecoxib released from poly(D,L-lactic acid)microspheres is able to prevent unwanted ossification in an in vivo model for the subperiosteal cartilage generation.

METHODS

A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded or (n=8) or loaded (n=7) with celecoxib-loaded PGLA microspheres (poly(D,L-lactic acid) microspheres were loaded with 20% (w/w) Celecoxib (Pfizer)). Fourteen days post-injection, rabbits were euthanised. The developed subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry were performed for key markers of different phases of endochondral ossification.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 79 - 79
1 Apr 2018
Timur UT Caron M Welting T van Rhijn L Emans P Jahr H
Full Access

Introduction

In vitro expansion of human articular chondrocytes (HACs) is required for cell-based strategies to treat cartilage defects. We have earlier shown that culturing HACs at increased osmolarity (i.e., 380 mOsm), as compared to plasma osmolarity (i.e., 280 mOsm), increases collagen type II (COL2A1) expression in vitro. Our earlier results showed that knockdown of TGF-β2, a prototypic member of the TGF-β superfamily and an accepted key regulator of chondrocyte differentiation, resulted in increased COL2A1 production. BMPs are members of the TGF-β superfamily which are known to be involved in the regulation of COL2A1 expression. In this study, we aimed to elucidate the role of BMP signaling, in the upregulation of COL2 production upon TGF-β2 knockdown (KD) under hyperosmotic culture conditions.

Methods

HACs from five OA patients (passage 1) were cultured in cytokine-free medium, under 280 or 380 mOsm respectively, under standard 2D in vitro conditions. TGF-β2 knockdown (KD) by siRNA was performed in the presence or absence of the established bone morphogenetic protein (BMP) type I receptor (BMPRI) inhibitor dorsomorphin (10 μM). Expression of COL2A1 was evaluated by qRT-PCR.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 15 - 15
1 Apr 2017
Timur U van der Windt A Caron M Welting T Emans P Jahr H
Full Access

Background

Treatment of cartilage defects requires in vitro expansion of human articular chondrocytes (HACs) for autologous chondrocyte implantation (ACI). During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype (i.e. collagen type II (COL2) expression). This de-differentiation makes them inappropriate for ACI. Physiological osmolarity (i.e. 380 mOsm) improves COL2 expression in vitro, but the underlying reason is unknown. However, an accepted key regulator of chondrocyte differentiation, transforming growth factor beta (TGFβ), is known to stimulate COL2 production. In this study we aimed to elucidate if TGFβ signaling could potentially be driving the COL2 expression under physiological culture conditions.

Material and methods

After informed consent was obtained, HACs were isolated from five osteoarthritis (OA) patients and cultured in cytokine-free medium of 280 or 380 mOsm, respectively, under standard 2D in vitro conditions with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, superfamily receptors and chondrocyte marker genes was evaluated by qRT-PCR, TGFβ2 protein secretion by ELISA and TGFβ bioactivity using luciferase reporter assays. Statistical significance was assessed by a student's t-test.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 108 - 108
1 Jan 2017
Stevens J Welting T Witlox A van Rhijn L Staal H
Full Access

Dysplasia Epiphysealis Hemimelica (DEH) also known as Trevor's Disease is a rare developmental disorder resulting in cartilaginous overgrowth of the epiphysis of long bones. DEH is usually diagnosed in children between two and eight years old and it is three times more often diagnosed in boys. The most reported complaints are pain, limitation in range of motion, and deformity or swelling of the affected joint. Treatment of symptomatic lesions consists of surgical resection of the lesion, resulting in good long-term results.

Based on histological evaluation, DEH is often described as an osteochondroma or an osteochondroma-like lesion, although there are clinical, radiological and genetic differences between DEH and osteochondromas. To investigate the hypothesis that DEH and osteochondromas are histologically identical, two cases of DEH and two cases of osteochondromas in patients with Hereditary Multiple Osteochondroma (HMO) are compared at histological level.

Tissue samples from patients with a histopathologically confirmed diagnosis of DEH were compared with two age and gender matched patients diagnosed with HMO. After tissue sampling and processing, (immuno)histological stainings were performed for Collagen type II, Collagen type X, Sox-9 and Safranin-O.

Histologically, clumping of chondrocytes in a fibrillar matrix, a thick disorganized cartilage cap and ossification centres with small amounts of unresorbed cartilage were observed in DEH. In contrast, chondrocyte organisation in cartilage of osteochondromas displays characteristics of the normal growth plate. In addition, differences in expression of collagen type II, collagen type X and Sox9 were observed. Collagen type II was expressed in the extracellular matrix surrounding proliferative and hypertrophic chondrocytes in osteochondromas, while weak expression was observed in the entire cartilage cap in DEH. Collagen type X was not expressed in DEH, while expressed in the pericellular matrix surrounding hypertrophic chondrocytes in osteochondromas. Staining for Sox9 was positive in the hypertrophic chondrocytes in osteochondromas, while expressed in the nuclei of all chondrocyte clusters in DEH.

Both morphological and immunohistological differences were observed in histological sections of DEH and osteochondromas. These findings reject our hypothesis, and supports the earlier observed clinical, radiological and genetic differences and implies a different aetiology between DEH and osteochondroma formation in HMO.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 15 - 15
1 Jan 2017
Timur U Caron M Welting T Weinans H van der Windt A Emans P Jahr H
Full Access

As cartilage has poor intrinsic repair capacity, in vitroexpansion of human articular chondrocytes (HACs) is required for cell-based therapies to treat cartilage pathologies. During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype and de-differentiate, which makes them inappropriate for autologous chondrocyte implantation. It has been shown that physiological osmolarity (i.e. 380 mOsm) increases collagen type II (COL2) expression in vitro, but the underlying molecular mechanism is unknown. Transforming growth factor beta (TGFβ) super family members are accepted key regulators of chondrocyte differentiation and known to stimulate COL2 production. In this study we aimed to elucidate the role of TGFβ superfamily member signalling as a molecular mechanism potentially driving the COL2 expression under physiological (380 mOsm) culture conditions.

HACs from OA patients (p1) were cultured in cytokine-free medium of 280 or 380 mOsm, under standard 2D in vitroconditions, with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, BMPs and chondrocyte marker genes was evaluated by QPCR. TGFβ2 protein secretion was evaluated using ELISA and bioactivity was determined using an established reporter cell line. Involvement of BMP signaling was investigated by culturing OA HACs (p1) in the presence or absence of dorsomorphin (10 µM).

Physiological osmolarity increased TGFβ2 and TGFβ3 mRNA expression, TGFβ2 protein secretion as well as general TGFβ activity by 380 mOsm. Upon TGFβ2 isoform-specific knockdown COL2 mRNA expression was induced. TGFβ2 RNAi induced expression of several BMPs (e.g. BMP2,-4,-6) and this induction was enhanced in culture conditions with physiological osmolarity. Dorsomorphin inhibited physiological osmolarity induced COL2 mRNA expression.

TGFβ2 knockdown under 380 mOsm increases COL2 expression in human osteoarthritic chondrocytes in vitromost likely through a regulatory feedback loop via BMP signaling, which is involved in osmolarity-induced COL2 expression. Future studies will further elucidate the BMP-mediated regulatory feedback loop after TGF β2 knockdown and its influence on COL2 expression.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 72 - 72
1 Jan 2017
Caron M Emans P Cremers A Surtel D van Rhijn L Welting T
Full Access

Heterotopic ossi?cation is the abnormal formation of bone in soft tissues and is a frequent complication of hip replacement surgery. Heterotopic ossi?cations are described to develop via endochondral ossification and standard treatment is administration of indomethacin. It is currently unknown how indomethacin influences heterotopic ossi?cation on a molecular level, therefore we aimed to determine whether indomethacin might influence heterotopic ossi?cation via impairing the chondrogenic phase of endochondral ossification.

ATDC5, human bone marrow stem cells (hBMSCs) and rabbit periosteal agarose cultures were employed as progenitor cell models; SW1353, human articular chondrocytes and differentiated ATDC5 cells were used as matured chondrocyte cell models. All cells were cultured in the presence of (increasing) concentrations of indomethacin. The action of indomethacin was confirmed by decreased PGE2 levels in all experiments, and was determined by specific PGE2 ELISA. Gene- and protein expression analyses were employed to determine chondrogenic outcome.

Progenitor cell models differentiating in the chondrogenic lineage (ATDC5, primary human bone marrow stem cells and ex vivo periosteal agarose cultures) were treated with increasing concentrations of indomethacin and a dose-dependent decrease in gene- and protein expression of chondrogenic and hypertrophic markers as well as decreased glycosaminoglycan content was observed. Even when hypertrophic differentiation was provoked the addition of indomethacin resulted in decreased hypertrophic marker expression. Interestingly, when mature chondrocytes were treated with indomethacin, a clear increase in collagen type 2 expression was observed. Similarly, when ATDC5 cells and bone marrow stem cells were pre-differentiated to obtain a chondrocyte phenotype and indomethacin was added from this time point onwards, low concentrations of indomethacin also resulted in increased chondrogenic differentiation.

Indomethacin induces differential effects on in vitro endochondral ossification, depending on the chondrocyte's differentiation stage, with complete inhibition of chondrogenic differentiation as the most pronounced action. This observation may provide a rationale behind the elusive mode of action of indomethacin in the treatment of heterotopic ossifications.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 289 - 289
1 Jul 2014
Caron M Emans P Surtel D Cremers A van Rhijn L Welting T
Full Access

Summary

Indomethacin has differential effects on chondrogencic outcome depending on differentiation stage

Introduction

Heterotopic ossification (HO) is the abnormal formation of bone in soft tissues and is a frequent complication of hip replacement surgery. The standard treatment to prevent HO is administration of the NSAID indomethacin. HOs are described to develop via endochondral ossification. As it is currently unknown how indomethacin prevents HO, we aimed to define whether indomethacin might influence HO via impairing the chondrogenic phase of endochondral ossification.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 305 - 305
1 Jul 2014
Roth A Bogie R Willems P Welting T Arts C van Rhijn L
Full Access

Summary Statement

Novel radiopaque UHMWPE sublaminar cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system for the surgical treatment of early onset scoliosis.

Introduction

Growth-guidance or self-lengthening rod systems are an alternative to subcutaneous growing rods and the vertical expandable prosthetic titanium rib for the treatment of early onset scoliosis. Their main perceived advantage over growing rods is the marked decrease in subsequent operative procedures. The Shilla growth-guidance system and a modern Luque trolley are examples of such systems; both depend on gliding pedicle screws and/or sliding titanium sublaminar wires. However, the unknown consequences of metal-on-metal wear debris are reason for concern especially in young patients. In this study, instrumentation stability, residual growth in the operated segment after surgery and biocompatibility of the novel radiopaque UHMWPE cables as an alternative to gliding pedicles screws or titanium sublaminar wires were assessed in an immature sheep model.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 287 - 287
1 Sep 2012
Bogie R Voss L Welting T Willems P Arts J Van Rhijn L
Full Access

INTRODUCTION

Surgical correction of spinal deformities in the growing child can be applied with or without fusion. Sublaminar wiring, first described by Luque, allows continuation of growth of the non-fused spine after correction of the deformity. Neurological complications and wire breakage are the main clinical problems during the introduction and removal of currently used sublaminar wires. In this pilot study a posterior hybrid construction with the use of a medical-grade UHMWPE (Dyneema Purity®) sublaminar wire was assessed in an ovine model. We hypothesized that such a hybrid construction can safely replace current titanium laminar wires, while providing sufficient stability of the non-fused spinal column with preservation of growth.

MATERIALS AND METHODS

This study included 6 Tesselaar sheep, age 7±2months. Two pedicle screws (Legacy system, Medtronic) were placed at lumbar level. Four consecutive laminae were attached to two titanium bars (4.5 mm) using 3 mm diameter UHMWPE (Dyneema Purity®) on the left side and 5 mm diameter on the right side. The sublaminar wires were fixed with a double loop sliding knot and tightened with a tensioning device. As a control, in one animal titanium sublaminar wires (Atlas cable, Medtronic) were applied. After sacrifice the spine of the animals was harvested. Radiographs were taken and CT scans were performed. The vertebrae were dissected and placed in formaldehyde for macroscopic and histological evaluation.