Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims

Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement.

Methods

We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 49 - 49
1 Feb 2016
d'Entremont AG Jones CE Wilson DR Mulpuri K
Full Access

Perthes disease is a childhood disorder often resulting in femoral head deformity. Categorical/dichotomous outcomes of deformity are typical clinically, however quantitative, continuous measures, such as Sphericity Deviation Score (SDS), are critical for studying interventions. SDS uses radiographs in two planes to quantify femoral head deformity. Limitations of SDS may include non-orthogonal planes and lost details due to projections. We applied this method in 3D, with specific objectives to: 1. Develop SDS-like sphericity measures from 3D data 2. Obtain 2D and 3D sphericity for normal and Perthes hips 3. Compare slice-based (3D) and projection-based (2D) sphericity CT images of 16 normal (8 subjects) and 5 Perthes hips (4 subjects) were segmented to create 3D hip models. Ethics board approval was obtained for this study. SDS consists of roundness error (RE) in two planes and ellipsoid deformation (ED) between planes. We implemented a modified SDS which was applied to (a) orthogonal projections simulating radiographs (sagittal/coronal; 2D-mSDS), and (b) largest radii slices (sagittal/coronal; 3D-mSDS). Mean 2D-mSDS was higher for Perthes (27.2 (SD 11.4)) than normal (11.9 (SD 4.1)). Mean 3D-mSDS showed similar trends, but was higher than 2D (Perthes 33.6 (SD 5.3), normals 17.0 (SD 3.1)). Unlike 2D-mSDS, 3D-mSDS showed no overlap between groups. For Perthes hips, 2D-mSDS was consistent with SDS. For normal hips, 2D-mSDS was higher than expected (similar to Stulberg II). Projection-based (2D) measures may produce lower mSDS due to spatial averaging. Slice-based (3D) measures may better distinguish between normal and Perthes shapes, which may better differentiate effectiveness of treatments.


This paper presents a methodology for measuring the femoro-pelvic joint angle based on in vivo magnetic resonance imaging (MRI) images taken under weight-bearing conditions. We assess the reproducibility of angle measurements acquired when the subject is asked to repeatedly assume a reference position and perform a voluntary movement.

We scanned a healthy subject in a lying position in a 3T MRI scanner to obtain high resolution (HR) images including two transverse T1-weighted TSE sequence scans at the pelvis and knee and a sagittal T1-weighted dual sense scan at the hip joint. We then scanned the same subject in a weight-bearing configuration in a 0.5T open MRI scanner to obtain related low resolution (LR) images of the femur and acetabulum. Four scan cycles were obtained with the subject being removed and reinserted between cycles in the Open MRI scanner. In each cycle, a block was inserted (up position) and removed (down position) under the subject's foot.

The femur and acetabulum bone models were manually segmented and the models from the LR (sitting) images were registered to the HR (supine) images. The femoroacetabular angles relative to the LR scanning plane for four cycles were calculated. The femoral angle relative to the scanner were quite repeatable (SD < 0.9°), the pelvic angles less so (SD ∼2.6–4.3°). The hip flexion angle ranged from 23°–34° in the down and up positions, respectively, so the block induced a mean angle change in the flexion direction of approximately 11° (SD = 1.7°).

We found that the femoral position could be accurately re-acquired upon repositioning, while the pelvic position was notably more variable. Limb position changes induced by inserting a block under the subject's foot were consistent (standard deviations in the relative attitude angles under 2°). Overall, our measurement method produces plausible measures of both the femoroacetabular angles and the changes induced by the block, and the reproducibility of relative joint changes is good.

ACKNOWLEDGMENTS: Dr. Kang was supported by the National Science and Engineering Research Council of Canada (NSERC) through a Postdoctoral Fellowship and conducted her research at the Centre for Hip Health and Mobility at Vancouver General Hospital, Canada.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 45 - 45
1 Sep 2012
Amiri S Wilson DR Masri BA Sharma G Anglin C
Full Access

Purpose

Measurements of patellar kinematics are essential to investigate the link between anterior knee pain following knee arthroplasty and patellar maltracking. A major challenge in studying the patellofemoral (PF) joint postoperatively is that the patellar component is only partially visible in the sagittal and close-to-sagittal radiographs. The narrow angular distance between these radiographs makes the application of conventional bi-planar fluoroscopy impossible. In this study a methodology has been introduced and validated for accurate estimation of the 3D kinematics of the PF joint post-arthroplasty using a novel multi-planar fluoroscopy approach.

Method

An optoelectronic camera (Optotrak Certus) was used to track the motion of an ISO-C fluoroscopy C-arm (Siemens Siremobil) using two sets of markers attached to the X-ray source and detector housings. The C-arm was used in the Digital Radiography (DR) mode, which resembles an ordinary X-ray fluoroscopy image. A previously-developed technique (Cho et al., 2005; Daly et al., 2008) was adapted to find the geometric parameters of the imaging system. Thirty-eight DRs of the calibration phantom were obtained for the 190 of rotation of the C-arm at 5 rotational increments while data from motion markers were recorded continuously at a frequency of 100 Hz. A total knee replacement prosthesis was implanted on an artificial bone model of the knee, and the implant components and bones were rigidly fixed in place using a urethane rigid foam. For the purpose of validation, positions of the implant components were determined using a coordinate measuring machine (CMM). Sagittal and obliquely sagittal radiographs of the model were taken where the patellar component was most visible. For each DR the geometric parameters of the system were interpolated based on the location of the motion markers. The exact location of the projection was then determined in 3D space. JointTrack Bi-plane software (Dr. Scott Banks, University of Florida, Gainesville) was used to conduct 2D-3D registration between the radiographs and the reverse-engineered models of the implant components. Results of the registration were directly compared to the ground-truth obtained from the CMM to calculate the accuracies.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 249 - 249
1 Jul 2011
McWalter EJ Wilson DR Harvey WF Lamb KA McCree PI Hunter DJ
Full Access

Purpose: Patellar bracing is a common, mechanical-based treatment strategy for patellofemoral osteoarthritis (OA). It is thought that the brace corrects patellar tracking, however, this correction has not been quantified in the OA population. Through advances in magnetic resonance imaging (MRI), we can now assess patellar tracking in three-dimensions.

Method: We assessed three-dimensional patellar tracking in ten subjects with symptomatic radiographic patellofemoral knee OA using a validated, quasi-static, MRI-based method. Four conditions were studied:

no knee brace, no load,

no knee brace, 15% bodyweight (BW) load,

knee brace, no load,

knee brace, 15% BW load.

Patellar tracking (flexion, spin and tilt; proximal, lateral and anterior translation) was assessed. Comparisons were made at 1° increments over the coincidental range of knee flexion between the no-brace and brace conditions, at no load and 15% BW load, using a paired t-test with Bonferroni correction.

Results: All subjects (7 female, 3 male, 60.9±1.3 yrs, 89.5±19.3 kg) had radiographic lateral patellofemoral OA and seven had concomitant tibiofemoral OA (KL grade≥2). Under no load, the brace extended (mean=2.7°, CI=[2.4°, 2.9°], P< 0.001) and medially tilted (mean=−1.4°, CI=[−1.6°, −1.2°], P< 0.001) the patellae and shifted them distally (mean=0.8mm, CI=[0.6mm, 0.9mm], P< 0.001), medially (mean=0.5mm, CI=[0.5mm, 0.6mm], P< 0.001) and posteriorly (mean=0.6mm, CI=[0.5mm, 0.6mm], P< 0.001). Under 15% BW load, the brace extended the patella (mean=2.4°, CI=[2.1°, 2.8°], P< 0.001) and shifted them distally (mean=1.3mm, CI=[1.1mm, 1.4mm], P< 0.001), medially (mean=0.8mm, CI=[0.7mm, 0.9mm], P< 0.001) and posteriorly (mean 0.6mm, CI=[0.5mm, 0.7mm], P< 0.001).

Conclusion: The brace extended the patellae for both loading conditions, suggesting that patellar flexion/extension is restricted by the brace. The brace tilted the patellae medially under no load only, suggesting when the quadriceps are active (15% BW load) the brace has little effect for tilt. While the effect of bracing on patellar tracking may appear small, the differences are of similar magnitude to those observed between normals and patients with patellofemoral pain, suggesting that braces may produce clinically significant changes in patellar tracking.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 250 - 250
1 Jul 2011
Johnston JD Masri BA Wilson DR
Full Access

Purpose: Subchondral cortical and trabecular bone mineral density (BMD) may increase and/or decrease during different stages of osteoarthritis (OA) disease progression. 2D in-vivo imaging studies examining direct associations between increased proximal tibial BMD and knee OA offer conflicting results, which may be due to the inherent limitations of 2D BMD imaging tools. Our objective was to compare existing and novel 3D imaging techniques for distinguishing subchondral bone properties in OA and normal cadaveric tibiae.

Method: Eight intact cadaver knees from five donors (4M:1F; age: 77+/−10) were repositioned and scanned three times using QCT (0.5mm isotropic resolution, 0.15mSv dosage). BMD was assessed using

computed tomography absorptiometry (CT-OAM) which uses maximum intensity projections to assesses peak density values within subchondral bone, and

our novel computed tomography topographic mapping of subchondral density (CT-TOMASD) technique, which uses surface projections to assess both cortical and trabecular bone density at specific depths from the subchondral surface.

Average BMD at normalized depths of 0–2.5mm, 2.5–5.0mm, and 5.0–10mm from the surface were assessed using CT-TomasD. Regional analyses were performed consisting of:

medial/lateral (M/L) BMD ratio, and

BMD of a 10mm diameter core identified as having the maximum regional BMD.

Each bone was assessed for OA using a modified-KL scoring system: Normal (mKL=0); Early-OA (1–2); and Late-OA (3–4).

Results: OA was identified in four compartments of three tibiae (1 late OA+valgus, 1 late OA+varus, 1 early OA+neutral). Larger density differences between OA and normal knees were noted using CT-TOMASD compared with CT-OAM. CT-TomasD demonstrated that the two knees with late OA demonstrated M/L BMD ratios differing by more than 3.4 SD compared with normals, with peak cores higher than normals across all depths. The knee with early OA and neutral alignment demonstrated M/L ratios less than normals while core differences were highest proximally, with density becoming lower than normals with increasing depth.

Conclusion: CT-TomasD demonstrated larger differences between OA and normal subjects when compared with CT-OAM differences. This may be due to CT-OAM primarily assessing peak density within the thin subchondral cortical endplate; a region demonstrating fairly uniform peak densities within a limited range.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 260 - 260
1 Jul 2011
Veljkovic A Fong J Henigar A Wilson DR Dunbar MJ Glazebrook M
Full Access

Purpose: Radiostereometric Analysis (RSA) is used to measure migration and inducible displacement (ID) of orthopedic implant devices to allow early prediction of implant failure (eg. Aseptic loosening). Total Ankle Arthroplasty (TAA) is used for the treatment of end-stage ankle arthritis. First generation TAA implant have meet with widespread failures while some second generation TAA implants are showing improved results. In this study RSA is used to evaluate the biomechanical properties of a new third generation TAA implant in an attempt to set a standard for the biomechanical evaluation on TAA implants in-vivo.

Method: Patients undergoing TAA were enrolled consecutively (n=12; 7 males; mean age=59 years; mean BMI=29) and had 8 markers (0.08mm) inserted in both the tibia and talus during surgery. Standing, weight-bearing RSA exams were performed at 3 and 6 months and compared to concurrent supine exams to determine component ID.

Results: For tibial components: at six months the components had translated posteriorly (0.3mm±0.5) and proximally (0.5mm±0.2), tilted into varus (0.5°±1.3), and tilted posteriorly (0.4°±0.8). The magnitudes of ID for the tibial components were moderate (mean < 0.2mm and 0.5°, standard deviation < 0.3mm and 2.2° in each direction). For talar components: at six months the components had translated distally (0.28mm±0.35), rotated internally (0.21°±1.32) and tilted posteriorly (0.15°±0.90). There was varus/valgus tilt measured in the talar components but there was no consistent direction of migration (0.03°±1.4). At six months the magnitudes of ID for the talar components were small (mean < 0.1mm and 0.25°, standard deviation < 0.2mm and 0.6° in each direction).

Conclusion: An RSA methodology has been established to predict stability.