Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 13 - 13
1 Oct 2012
Müller M Belei P de la Fuente M Strake M Kabir K Burger C Radermacher K Wirtz DC
Full Access

Pertrochanteric femoral fractures are common and intramedullary nailing with a proximal femoral nail (PFNA®) is an accepted method for the surgical treatment. Accurate guide wire and subsequent hardware placement in the femoral neck is believed to be essential in order to avoid mechanical failure. Malpositioned implants may lead to rotational or angular malalignment or “cut out” in the femoral neck. Hip and knee arthritis might be a potential long-term consequence. The conventional technique might require multiple guidewire passes, and relies heavily on fluoroscopy.

A computer-assisted surgical planning and navigation system based on 2D-fluoroscopy was developed in-house as an intraoperative guidance system for navigated guide wire placement in the femoral neck and head. To support the image acquisition process, the surgeon is supported by a so-called “zero-dose C-arm navigation” module. This tool enables a virtual radiation-free preview of the X-ray images of the femoral neck and head. The aim of this study was to compare PFNA® insertion using this system to conventional implantation technique. We hypothesised that guide wire and subsequent implant placement using our software decreases radiation exposure to the minimum of two images and reduces the number of drilling attempts. Furthermore, accuracy of implant placement in comparison to the conventional method might be improved and operation time shortened.

We used 24 identical intact left femoral Sawbones® to simulate reduced pertrochanteric femoral fractures. First, we performed placement of the PFNA® into 12 Sawbones using the conventional fluoroscopic technique (group 1). Secondly, we performed placement of the PFNA® into 12 Sawbones guided by the computer-assisted surgical planning software (group 2). In each group, we first performed open and secondly minimal-invasive intramedullary nailing in six sawbones each. For minimal-invasive guide wire placement, a surgical drape imitated soft tissue coverage. Conventional and navigated technique used a C-arm fluoroscope (Siemens IsoC 3D®, Erlangen, Germany) in conventional 2D mode. Guidewire and subsequent blade placement in the femoral neck was evaluated. We documented: 1: the number of fluoroscopic images; 2: the total number of drilling attempts; 3: implant placement accuracy (3.1. Tip apex distance (TAD); 3.2. visible penetrations of the femoral neck and head; 3.3. blade-corticalis bone distance in the anteroposterior and lateral plane) and the 4: operation time.

The number of fluoroscopic single shots taken to achieve an acceptable PFNA®-blade position was reduced significantly with computer-assistance by 71.5% (p<0.001) in the open and by 72,4% (p<0.001) in the minimally invasive technique. In each operation two X-rays for final documentation were taken. The average number of drilling attempts for the computer-guided system was significantly (p<0.05) less than that of the conventional technique in the minimally invasive procedure. The average number of drilling attempts showed no difference between the computer-assisted and conventional techniques in the open procedure. Accuracy of implant placement showed no difference between the computer-assisted and the conventional group. Computer assistance significantly increased the mean operation time for fixation of pertrochanteric femoral fractures with a PFNA® by 79.8% (p<0.001) in the open technique and by 54.4% (p<0.001) in the minimally invasive technique.

Use of our computer-guided system for fixation of pertrochanteric femoral fractures by a PFNA® decreases the number of fluoroscopic single shots and of suboptimal guide wire passes while maintaining blade placement accuracy that is equivalent to the conventional technique. Computer-assisted surgery with our system increases the operation time and has just been tested in non-fractured sawbones. Although these results are promising, additional studies including fractured sawbones and cadaver models with extension of the navigation process to all steps of PFNA® introduction and with the goal of reducing the operation time are indispensable before integration of this navigation system into the clinical workflow.