Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 5, Issue 2 | Pages 46 - 51
1 Feb 2016
Du J Wu J Wen Z Lin X

Objectives. To employ a simple and fast method to evaluate those patients with neurological deficits and misplaced screws in relatively safe lumbosacral spine, and to determine if it is necessary to undertake revision surgery. Methods. A total of 316 patients were treated by fixation of lumbar and lumbosacral transpedicle screws at our institution from January 2011 to December 2012. We designed the criteria for post-operative revision scores of pedicle screw malpositioning (PRSPSM) in the lumbosacral canal. We recommend the revision of the misplaced pedicle screw in patients with PRSPSM = 5′ as early as possible. However, patients with PRSPSM < 5′ need to follow the next consecutive assessment procedures. A total of 15 patients were included according to at least three-stage follow-up. Results. Five patients with neurological complications (PRSPSM = 5′) underwent revision surgery at an early stage. The other ten patients with PRSPSM < 5′ were treated by conservative methods for seven days. At three-month follow-up, only one patient showed delayed onset of neurological complications (PRSPSM 7′) while refusing revision. Seven months later, PRSPSM decreased to 3′ with complete rehabilitation. Conclusions. This study highlights the significance of consecutively dynamic assessments of PRSPSMs, which are unlike previous implementations based on purely anatomical assessment or early onset of neurological deficits.and also confirms our hypothesis that patients with early neurological complications may not need revision procedures in the relatively broad margin of the lumbosacral canal. Cite this article: X-J. Lin. Treatment strategies for early neurological deficits related to malpositioned pedicle screws in the lumbosacral canal: A pilot study. Bone Joint Res 2016;5:46–51


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice.

Cite this article: Bone Joint Res 2020;9(7):351–359.