Advertisement for orthosearch.org.uk
Results 1 - 20 of 52
Results per page:
Bone & Joint Research
Vol. 5, Issue 3 | Pages 101 - 105
1 Mar 2016
Wang X Luo F Huang K Xie Z

Objectives. Induced membrane technique is a relatively new technique in the reconstruction of large bone defects. It involves the implantation of polymethylmethacrylate (PMMA) cement in the bone defects to induce the formation of membranes after radical debridement and reconstruction of bone defects using an autologous cancellous bone graft in a span of four to eight weeks. The purpose of this study was to explore the clinical outcomes of the induced membrane technique for the treatment of post-traumatic osteomyelitis in 32 patients. Methods. A total of 32 cases of post-traumatic osteomyelitis were admitted to our department between August 2011 and October 2012. This retrospective study included 22 men and ten women, with a mean age of 40 years (19 to 70). Within this group there were 20 tibias and 12 femurs with a mean defect of 5 cm (1.5 to 12.5). Antibiotic-loaded PMMA cement was inserted into the defects after radical debridement. After approximately eight weeks, the defects were implanted with bone graft. Results. The patients were followed for 27.5 months (24 to 32). Radiographic bone union occurred at six months for 26 cases (81%) and clinical healing occurred in 29 cases (90%) at ten months. A total of six cases had a second debridement before bone grafting because of recurrence of infection and one patient required a third debridement. No cases of osteomyelitis had recurred at the time of the last follow-up visit. Conclusion. The induced membrane technique for the treatment of post-traumatic osteomyelitis is a simple, reliable method, with good early results. However, there are many challenges in determining the scope of the debridement, type of limb fixation and source of bone graft to be used. Cite this article: Dr Z. Xie. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res 2016;5:101–105. DOI: 10.1302/2046-3758.53.2000487


Bone & Joint Research
Vol. 12, Issue 8 | Pages 467 - 475
2 Aug 2023
Wu H Sun D Wang S Jia C Shen J Wang X Hou C Xie Z Luo F

Aims. This study was designed to characterize the recurrence incidence and risk factors of antibiotic-loaded cement spacer (ALCS) for definitive bone defect treatment in limb osteomyelitis. Methods. We included adult patients with limb osteomyelitis who received debridement and ALCS insertion into the bone defect as definitive management between 2013 and 2020 in our clinical centre. The follow-up time was at least two years. Data on patients’ demographics, clinical characteristics, and infection recurrence were retrospectively collected and analyzed. Results. In total, 314 patients with a mean age of 52.1 years (SD 12.1) were enrolled. After a mean of 50 months’ (24 to 96) follow-up, 53 (16.9%) patients had infection recurrence including 32 tibiae, ten femora, ten calcanea, and one humerus. Of all patients with recurrence, 30 (9.6%) occurred within one year and 39 (12.4%) within two years. Among them, 41 patients needed reoperation, five received antibiotics treatment only, and seven ultimately required amputations. Following multivariable analysis, we found that patients infected with Gram-negative bacilli were more likely to have a recurrence (odds ratio (OR) 2.38, 95% confidence interval (CI) 1.20 to 6.94; p = 0.046) compared to Staphylococcus aureus; segmental bone defects (OR 5.25, 95% CI 1.80 to 15.26; p = 0.002) and smoking (OR 3.00, 95% CI 1.39 to 6.50; p = 0.005) were also independent risk factors for recurrence after treatment. Conclusion. Permanent ALCS might be an alternative strategy for definitive bone defect management in selected osteomyelitis cases. However, the overall high recurrence found suggests that it should be cautiously treated. Additionally, segmental defects, Gram-negative infections, and smoking were associated with an increased risk of infection recurrence. Cite this article: Bone Joint Res 2023;12(8):467–475


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


Bone & Joint Research
Vol. 9, Issue 7 | Pages 394 - 401
1 Jul 2020
Blirup-Plum SA Bjarnsholt T Jensen HE Kragh KN Aalbæk B Gottlieb H Bue M Jensen LK

Aims. CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model. Methods. Osteomyelitis was induced in nine pigs by inoculation of 10. 4. colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention. Results. All animals presented confirmatory signs of bone infection post-mortem. The estimated amount of inflammation was substantially greater in Groups A and B compared to Group C. In both Groups B and C, peptide nucleic acid fluorescence in situ hybridization (PNA FISH) of CERAMENT|G and surrounding bone tissue revealed bacteria embedded in an opaque matrix, i.e. within biofilm. In addition, in Group C, the maximal measured post-mortem gentamicin concentrations in CERAMENT|G and surrounding bone tissue samples were 16.6 μg/ml and 6.2 μg/ml, respectively. Conclusion. The present study demonstrates that CERAMENT|G cannot be used as a standalone alternative to extensive debridement or be used without the addition of systemic antimicrobials. Cite this article: Bone Joint Res 2020;9(7):394–401


Aims. Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones. Methods. Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed. Results. Patient infection in both groups was eradicated after IMT surgery. As for reconstruction surgery, no substantial changes in the operative period (p = 0.852), intraoperative blood loss (p = 0.573), or length of hospital stay (p = 0.362) were found between the two groups. All patients were monitored for 12 to 60 months. The median time to bone healing was 4.0 months (interquartile range (IQR) 3.0 to 5.0; range 3 to 7) and 5.0 months (IQR 4.0 to 7.0; range 3 to 10) in Groups BMCA and BMAA, respectively. The time to heal in Group BMCA versus Group BMAA was substantially lower (p = 0.024). Conclusion. IMT with BMCA or BMAA may attain healing in large bone defects secondary to COM in children. The bone healing time was significantly shorter for BMCA, indicating that this could be considered as a new strategy for bone defect after COM treatment. Cite this article: Bone Joint Res 2021;10(1):31–40


Bone & Joint Research
Vol. 3, Issue 7 | Pages 223 - 229
1 Jul 2014
Fleiter N Walter G Bösebeck H Vogt S Büchner H Hirschberger W Hoffmann R

Objective . A clinical investigation into a new bone void filler is giving first data on systemic and local exposure to the anti-infective substance after implantation. Method . A total of 20 patients with post-traumatic/post-operative bone infections were enrolled in this open-label, prospective study. After radical surgical debridement, the bone cavity was filled with this material. The 21-day hospitalisation phase included determination of gentamicin concentrations in plasma, urine and wound exudate, assessment of wound healing, infection parameters, implant resorption, laboratory parameters, and adverse event monitoring. The follow-up period was six months. . Results . Systemic exposure to gentamicin after implantation was very low as local gentamicin concentrations were measured in wound exudate after six to ten hours. There were no signs of infectious complication throughout the clinical phase. Four patients had recurrent infections several weeks to months after implantation. The outcome was deemed successful by remission of infection in 16 (80%) of these problematic long-term treated patients. Safety laboratory measurements did not indicate nephrotoxic or hepatotoxic effects. . Conclusions . Local application of calcium sulphate/carbonate bone void filler comprising gentamicin revealed sufficient active local levels of the antibiotic by simultaneous significant low systemic exposure in patients with mostly chronic osteomyelitis/osteitis. The material was safe and well tolerated. Cite this article: Bone Joint Res 2014;3:223–9


Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims. Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up. Methods. A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery. Results. The median follow-up was 4.6 years (interquartile range (IQR) 3.2 to 5.4; range 1.3 to 10.5) in Group OT compared to 4.9 years (IQR 2.1 to 6.0; range 1.0 to 8.3) in Group CG. The groups had similar defect sizes following excision (both mean 10.9 cm. 3. (1 to 30)). Infection recurrence was higher in Group OT (20/179 (11.2%) vs 8/180 (4.4%), p = 0.019) than Group CG, as was early wound leakage (33/179 (18.4%) vs 18/180 (10.0%), p = 0.024) and subsequent fracture (11/179 (6.1%) vs 1.7% (3/180), p = 0.032). Group OT cases had an odds ratio 2.9-times higher of developing any one of these complications, compared to Group CG (95% confidence interval 1.74 to 4.81, p < 0.001). The mean bone-void healing in Group CG was better than in Group OT, in those with ≥ six-month radiological follow-up (73.9% vs 40.0%, p < 0.001). Conclusion. Local antibiotic carrier choice affects outcome in chronic osteomyelitis surgery. A biphasic injectable carrier with a slower dissolution time was associated with better radiological and clinical outcomes compared to a preformed calcium sulphate pellet carrier. Cite this article: Bone Joint Res 2023;12(7):412–422


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


Bone & Joint Research
Vol. 10, Issue 3 | Pages 156 - 165
1 Mar 2021
Yagi H Kihara S Mittwede PN Maher PL Rothenberg AC Falcione ADCM Chen A Urish KL Tuan RS Alexander PG

Aims. Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods. Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 10. 9. colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively. Results. Intraosseous periprosthetic introduction of planktonic bacteria induced an acute rise in ESR and CRP that subsided by day 14, and resulted in radiologically evident periprosthetic osteolysis by day 28 accompanied by elevated WBC counts and histological evidence of bacteria in the bone tunnels after screw removal. The aseptic screw group induced no increase in ESR, and no lysis developed around the implants. Bacterial viability was confirmed by implant sonication fluid culture. Conclusion. Intraosseous periprosthetic introduction of planktonic bacteria reliably induces survivable chronic PJI in rabbits. Cite this article: Bone Joint Res 2021;10(3):156–165


Bone & Joint Research
Vol. 8, Issue 7 | Pages 313 - 322
1 Jul 2019
Hanberg P Lund A Søballe K Bue M

Objectives. Meropenem may be an important drug in the treatment of open tibial fractures and chronic osteomyelitis. Therefore, the objective of this study was to describe meropenem pharmacokinetics in plasma, subcutaneous adipose tissue (SCT), and cancellous bone using microdialysis in a porcine model. Methods. Six female pigs were assigned to receive 1000 mg of meropenem intravenously over five minutes. Measurements of meropenem were obtained from plasma, SCT, and cancellous bone for eight hours thereafter. Microdialysis was applied for sampling in solid tissues. The meropenem concentrations were determined using ultra-high-performance liquid chromatography. Results. The penetration of meropenem into cancellous bone, expressed as the ratio of plasma to cancellous bone area under the concentration-curve from zero to the last measured value, was incomplete and delayed. The time with concentration above the minimal inhibitory concentration (T. >MIC. ), for an MIC of 0.5 μg/ml, was shorter for cancellous bone in comparison with both plasma and SCT. For MICs above 0.5 μg/ml, T. >MIC. in cancellous bone was only shorter than SCT. Considering an MIC of 4 μg/ml, no animals achieved the target of 40% T. >MIC. in plasma and cancellous bone, while less than 20% achieved it in SCT. Conclusion. The main finding of this study was short T. >MIC. in cancellous bone after intravenous administration of 1000 mg meropenem. Consequently, in order to achieve sufficient tissue concentration in the cases of open tibial fractures and chronic osteomyelitis, supplemental application of meropenem may be necessary. Cite this article: P. Hanberg, A. Lund, K. Søballe, M. Bue. Single-dose pharmacokinetics of meropenem in porcine cancellous bone determined by microdialysis: An animal study. Bone Joint Res 2019;8:342–348. DOI: 10.1302/2046-3758.87.BJR-2018-0308.R1


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives. Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis. Results. The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). Conclusions. This new biphasic bone substitute containing antibiotics provides safe prevention of bone infections in a range of clinical situations. The in vitro test method predicts the in vivo performance and makes it a reliable tool in the development of future antibiotic-eluting bone-regenerating materials. Cite this article: M. Stravinskas, P. Horstmann, J. Ferguson, W. Hettwer, M. Nilsson, S. Tarasevicius, M. M. Petersen, M. A. McNally, L. Lidgren. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute: In vitro and clinical release studies. Bone Joint Res 2016;5:427–435. DOI: 10.1302/2046-3758.59.BJR-2016-0108.R1


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims

The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI.

Methods

Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20).


Bone & Joint Research
Vol. 13, Issue 3 | Pages 124 - 126
11 Mar 2024
Shen J Wei Z Sun D Wu H Wang X Wang S Luo F Xie Z

Cite this article: Bone Joint Res 2024;13(3):124–126.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 401 - 410
15 Aug 2024
Hu H Ding H Lyu J Chen Y Huang C Zhang C Li W Fang X Zhang W

Aims

This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment.

Methods

A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims

This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI).

Methods

A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims

There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).

Methods

The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 835 - 842
17 Nov 2022
Wiesli MG Livio F Achermann Y Gautier E Wahl P

Aims

There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO4) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO4 applied locally to treat ODAI.

Methods

A total of 30 operations with ceftriaxone-loaded CaSO4 had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS).


Bone & Joint Research
Vol. 13, Issue 11 | Pages 632 - 646
7 Nov 2024
Diaz Dilernia F Watson D Heinrichs DE Vasarhelyi E

Aims

The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus.

Methods

We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 409 - 412
22 Jun 2022
Tsang SJ Ferreira N Simpson AHRW