Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 118 - 123
1 Jan 2025
Bavan L Bradley CS Verma Y Kelley SP

Aims

The primary aims of this study were to determine the time to sonographic correction of decentred hips during treatment with Pavlik harness for developmental dysplasia of the hip (DDH) and investigate potential risk factors for a delayed response to treatment.

Methods

This was a retrospective cohort study of infants with decentred hips who underwent a comprehensive management protocol with Pavlik harness between 2012 and 2016. Ultrasound assessments were performed at standardized intervals and time to correction from centring of the femoral head was quantified. Hips with < 40% femoral head coverage (FHC) were considered decentred, and hips with > 50% FHC and α angles > 60° were considered corrected. Survival analyses using log-rank tests and Cox regression were performed to investigate potential risk factors for delayed time to correction.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 205 - 212
1 Mar 2018
Lin Y Hall AC Simpson AHRW

Objectives. The purpose of this study was to create a novel ex vivo organ culture model for evaluating the effects of static and dynamic load on cartilage. Methods. The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively. Results. Chondrocyte viability in the static model decreased significantly from 89.9% (. sd. 2.5%) (Day 0) to 66.5% (. sd. 13.1%) (Day 28), 94.7% (. sd. 1.1%) to 80. 9% (. sd. 5.8%) and 80.1% (. sd. 3.0%) to 46.9% (. sd. 8.5%) in the superficial quarter, central half and deep quarter of cartilage, respectively (p < 0.001 in each zone; one-way analysis of variance). The GAG content decreased significantly from 6.01 μg/mg (. sd. 0.06) (Day 0) to 4.71 μg/mg (. sd. 0.06) (Day 28) (p < 0.001; one-way analysis of variance). However, with dynamic movement, chondrocyte viability and GAG content were maintained at the Day 0 level over the four-week period without a significant change (chondrocyte viability: 92.0% (. sd. 4.0%) (Day 0) to 89.9% (. sd. 0.2%) (Day 28), 93.1% (. sd. 1.5%) to 93.8% (. sd. 0.9%) and 85.6% (. sd. 0.8%) to 84.0% (. sd. 2.9%) in the three corresponding zones; GAG content: 6.18 μg/mg (. sd. 0.15) (Day 0) to 6.06 μg/mg (. sd. 0.09) (Day 28)). Conclusion. Dynamic joint movement maintained chondrocyte viability and cartilage GAG content. This long-term whole joint culture model could be of value in providing a more natural and controlled platform for investigating the influence of joint movement on articular cartilage, and for evaluating novel therapies for cartilage repair. Cite this article: Y-C. Lin, A. C. Hall, A. H. R. W. Simpson. A novel organ culture model of a joint for the evaluation of static and dynamic load on articular cartilage. Bone Joint Res 2018;7:205–212. DOI: 10.1302/2046-3758.73.BJR-2017-0320