Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1190 - 1196
1 Oct 2024
Gelfer Y McNee AE Harris JD Mavrotas J Deriu L Cashman J Wright J Kothari A

Aims

The aim of this study was to gain a consensus for best practice of the assessment and management of children with idiopathic toe walking (ITW) in order to provide a benchmark for practitioners and guide the best consistent care.

Methods

An established Delphi approach with predetermined steps and degree of agreement based on a standardized protocol was used to determine consensus. The steering group members and Delphi survey participants included members from the British Society of Children’s Orthopaedic Surgery (BSCOS) and the Association of Paediatric Chartered Physiotherapists (APCP). The statements included definition, assessment, treatment indications, nonoperative and operative interventions, and outcomes. Descriptive statistics were used for analysis of the Delphi survey results. The AGREE checklist was followed for reporting the results.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 736 - 741
4 Sep 2024
Farr S Mataric T Kroyer B Barik S

Aims

The paediatric trigger thumb is a distinct clinical entity with unique anatomical abnormalities. The aim of this study was to present the long-term outcomes of A1 pulley release in idiopathic paediatric trigger thumbs based on established patient-reported outcome measures.

Methods

This study was a cross-sectional, questionnaire-based study conducted at a tertiary care orthopaedic centre. All cases of idiopathic paediatric trigger thumbs which underwent A1 pulley release between 2004 and 2011 and had a minimum follow-up period of ten years were included in the study. The abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH) was administered as an online survey, and ipsi- and contralateral thumb motion was assessed.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 815 - 820
1 Jul 2023
Mitchell PD Abraham A Carpenter C Henman PD Mavrotas J McCaul J Sanghrajka A Theologis T

Aims

The aim of this study was to determine the consensus best practice approach for the investigation and management of children (aged 0 to 15 years) in the UK with musculoskeletal infection (including septic arthritis, osteomyelitis, pyomyositis, tenosynovitis, fasciitis, and discitis). This consensus can then be used to ensure consistent, safe care for children in UK hospitals and those elsewhere with similar healthcare systems.

Methods

A Delphi approach was used to determine consensus in three core aspects of care: 1) assessment, investigation, and diagnosis; 2) treatment; and 3) service, pathways, and networks. A steering group of paediatric orthopaedic surgeons created statements which were then evaluated through a two-round Delphi survey sent to all members of the British Society for Children’s Orthopaedic Surgery (BSCOS). Statements were only included (‘consensus in’) in the final agreed consensus if at least 75% of respondents scored the statement as critical for inclusion. Statements were discarded (‘consensus out’) if at least 75% of respondents scored them as not important for inclusion. Reporting these results followed the Appraisal Guidelines for Research and Evaluation.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 19 - 26
13 Jan 2023
Nishida K Nasu Y Hashizume K Okita S Nakahara R Saito T Ozaki T Inoue H

Aims

There are concerns regarding complications and longevity of total elbow arthroplasty (TEA) in young patients, and the few previous publications are mainly limited to reports on linked elbow devices. We investigated the clinical outcome of unlinked TEA for patients aged less than 50 years with rheumatoid arthritis (RA).

Methods

We retrospectively reviewed the records of 26 elbows of 21 patients with RA who were aged less than 50 years who underwent primary TEA with an unlinked elbow prosthesis. The mean patient age was 46 years (35 to 49), and the mean follow-up period was 13.6 years (6 to 27). Outcome measures included pain, range of motion, Mayo Elbow Performance Score (MEPS), radiological evaluation for radiolucent line and loosening, complications, and revision surgery with or without implant removal.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims

Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release.

Methods

A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 302 - 310
1 Jun 2020
Tibbo ME Limberg AK Salib CG Turner TW McLaury AR Jay AG Bettencourt JW Carter JM Bolon B Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen AJ Abdel MP

Aims. Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits. Methods. A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein). Results. At the 24-week timepoint, there was a statistically significant increase in passive extension among rabbits treated with ketotifen compared to those treated with saline (p = 0.03). However, no difference in capsular stiffness was detected. Histopathological data failed to demonstrate a decrease in the density of fibrous tissue or a decrease in α-smooth muscle actin (α-SMA) staining with ketotifen treatment. In contrast, tryptase and α-SMA protein expression in the ketotifen group were decreased when compared to saline controls (p = 0.007 and p = 0.01, respectively). Furthermore, there was a significant decrease in α-SMA (ACTA2) gene expression in the ketotifen group compared to the control group (p < 0.001). Conclusion. Collectively, these data suggest that ketotifen mitigates the severity of contracture formation in a rabbit model of arthrofibrosis. Cite this article: Bone Joint Res 2020;9(6):302–310


Bone & Joint 360
Vol. 8, Issue 6 | Pages 36 - 39
1 Dec 2019


Bone & Joint 360
Vol. 7, Issue 4 | Pages 1 - 2
1 Aug 2018
Ollivere B


Bone & Joint Research
Vol. 7, Issue 3 | Pages 213 - 222
1 Mar 2018
Tang X Teng S Petri M Krettek C Liu C Jagodzinski M

Objectives. The aims of this study were to determine whether the administration of anti-inflammatory and antifibrotic agents affect the proliferation, viability, and expression of markers involved in the fibrotic development of the fibroblasts obtained from arthrofibrotic tissue in vitro, and to evaluate the effect of the agents on arthrofibrosis prevention in vivo. Methods. Dexamethasone, diclofenac, and decorin, in different concentrations, were employed to treat fibroblasts from arthrofibrotic tissue (AFib). Cell proliferation was measured by DNA quantitation, and viability was analyzed by Live/Dead staining. The levels of procollagen type I N-terminal propeptide (PINP) and procollagen type III N-terminal propeptide (PIIINP) were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the expressions of fibrotic markers were detected by real-time polymerase chain reaction (PCR). Fibroblasts isolated from healthy tissue (Fib) served as control. Further, a rabbit model of joint contracture was used to evaluate the antifibrotic effect of the three different agents. Results. Dexamethasone maintained the viability and promoted the proliferation of AFib. Diclofenac decreased the viability and inhibited the cell proliferation during the first week of cultivation. However, decorin inhibited AFib proliferation and downregulated the expressions of fibrotic markers. Additionally, decorin could improve the flexion contracture angle and inhibit the deposition of interstitial matrix components in the rabbit joint model. Conclusion. Decorin decreased the expression of myofibroblast markers in AFib, inhibited the proliferation of AFib, and prevented the initial procedure of arthrofibrosis in vivo, suggesting that decorin could be a promising treatment to inhibit the development of arthrofibrosis. Cite this article: X. Tang, S. Teng, M. Petri, C. Krettek, C. Liu, M. Jagodzinski. The effect of anti-inflammatory and antifibrotic agents on fibroblasts obtained from arthrofibrotic tissue: An in vitro and in vivo study. Bone Joint Res 2018;7:213–222. DOI: 10.1302/2046-3758.73.BJR-2017-0219.R2


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives. Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis. Materials and Methods. A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis. Results. Animals that underwent arthrotomy had equivalent joint contractures regardless of scaffold implantation (-13.9° versus -10.9°, equivalence limit 15°). Animals that underwent surgery to induce contracture did not demonstrate equivalent joint contractures with (41.8°) or without (53.9°) collagen scaffold implantation. Chondral damage occurred in similar rates with (11 of 48) and without (nine of 48) scaffold implantation. No significant difference in synovitis was noted between groups. Absorption of the collagen scaffold occurred within eight weeks in all animals. Conclusion. Our data suggest that intra-articular implantation of a collagen sponge does not induce synovitis or cartilage damage. Implantation in a native joint does not seem to induce contracture. Implantation of the collagen sponge in a rabbit knee model of contracture may decrease the severity of the contracture. Cite this article: J. A. Walker, T. J. Ewald, E. Lewallen, A. Van Wijnen, A. D. Hanssen, B. F. Morrey, M. E. Morrey, M. P. Abdel, J. Sanchez-Sotelo. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2016;6:162–171. DOI: 10.1302/2046-3758.63.BJR-2016-0193


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives

To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population.

Patients and Methods

A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations.


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint 360
Vol. 3, Issue 3 | Pages 34 - 37
1 Jun 2014

The June 2014 Children’s orthopaedics Roundup360 looks at: plaster wedging in paediatric forearm fractures; the medial approach for DDH; Ponseti – but not as he knew it?; Salter osteotomy more accurate than Pemberton in DDH; is the open paediatric fracture an emergency?; bang up-to-date with femoral external fixation; indomethacin, heterotopic ossification and cerebral palsy hips; lengthening nails for congenital femoral deformities, and is MRI the answer to imaging of the physis?


Bone & Joint Research
Vol. 3, Issue 3 | Pages 82 - 88
1 Mar 2014
Abdel MP Morrey ME Barlow JD Grill DE Kolbert CP An KN Steinmann SP Morrey BF Sanchez-Sotelo J

Objectives. The goal of this study was to determine whether intra-articular administration of the potentially anti-fibrotic agent decorin influences the expression of genes involved in the fibrotic cascade, and ultimately leads to less contracture, in an animal model. Methods. A total of 18 rabbits underwent an operation on their right knees to form contractures. Six limbs in group 1 received four intra-articular injections of decorin; six limbs in group 2 received four intra-articular injections of bovine serum albumin (BSA) over eight days; six limbs in group 3 received no injections. The contracted limbs of rabbits in group 1 were biomechanically and genetically compared with the contracted limbs of rabbits in groups 2 and 3, with the use of a calibrated joint measuring device and custom microarray, respectively. Results. There was no statistical difference in the flexion contracture angles between those limbs that received intra-articular decorin versus those that received intra-articular BSA (66° vs 69°; p = 0.41). Likewise, there was no statistical difference between those limbs that received intra-articular decorin versus those who had no injection (66° vs 72°; p = 0.27). When compared with BSA, decorin led to a statistically significant increase in the mRNA expression of 12 genes (p < 0.01). In addition, there was a statistical change in the mRNA expression of three genes, when compared with those without injection. . Conclusions. In this model, when administered intra-articularly at eight weeks, 2 mg of decorin had no significant effect on joint contractures. However, our genetic analysis revealed a significant alteration in several fibrotic genes. Cite this article: Bone Joint Res 2014;3:82–8


Bone & Joint Research
Vol. 3, Issue 3 | Pages 76 - 81
1 Mar 2014
Okabe YT Kondo T Mishima K Hayase Y Kato K Mizuno M Ishiguro N Kitoh H

Objectives

In order to ensure safety of the cell-based therapy for bone regeneration, we examined in vivo biodistribution of locally or systemically transplanted osteoblast-like cells generated from bone marrow (BM) derived mononuclear cells.

Methods

BM cells obtained from a total of 13 Sprague-Dawley (SD) green fluorescent protein transgenic (GFP-Tg) rats were culture-expanded in an osteogenic differentiation medium for three weeks. Osteoblast-like cells were then locally transplanted with collagen scaffolds to the rat model of segmental bone defect. Donor cells were also intravenously infused to the normal Sprague-Dawley (SD) rats for systemic biodistribution. The flow cytometric and histological analyses were performed for cellular tracking after transplantation.


Bone & Joint 360
Vol. 1, Issue 2 | Pages 19 - 21
1 Apr 2012

The April 2012 Wrist & Hand Roundup360 looks at releasing the trigger finger, function in the osteoarthritic hand, complex regional pain syndrome, arthroscopic ligamentoplasty for the injured scapholunate ligament, self-concept and upper limb deformities in children, wrist arthroscopy in children, internal or external fixation for the fractured distal radius, nerve grafting, splinting the PIPJ contracture, and finding the stalk of a dorsal wrist ganglion