Advertisement for orthosearch.org.uk
Results 1 - 20 of 182
Results per page:
Bone & Joint Open
Vol. 5, Issue 12 | Pages 1120 - 1122
20 Dec 2024
Gill RHS Haddad FS

Cite this article: Bone Jt Open 2024;5(12):1120–1122.


Aims. Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. Methods. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes. Results. Overall, 71.6% had an aHKA change ≤ 2°, and 87.0% a JLO change ≤ 3°. Mean aHKA changed from -1.1° (SD 2.8°) in KA to -1.9° (SD 2.3°) in FA (mean difference (MD) -0.83 (SD 2.0); p < 0.001). Mean JLO changed from 173.9° (SD 3.0°) in KA to 174.2° (SD 2.6°) in FA (MD 0.38 (SD 2.3); p < 0.001). CPAK type was maintained in 58.1% of knees, with the proportion highest for Types I (73.9%), II (61.1%), and IV (51.2%). In valgus knees, 67.5% of Type III and 71.7% of Type VI were shifted to neutral phenotypes. There was minimal change to constitutional JLO across all CPAK types (MDs -2.0° to 1.2°). Conclusion. Functional alignment may alter CPAK type, but does not significantly change JLO. A kinematic starting point minimizes changes to native anatomy, while final position with FA provides an optimally balanced TKA. Cite this article: Bone Jt Open 2024;5(12):1081–1091


Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims

This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods

A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims

Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group.

Methods

The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 879 - 885
14 Oct 2024
Moore J van de Graaf VA Wood JA Humburg P Colyn W Bellemans J Chen DB MacDessi SJ

Aims

This study examined windswept deformity (WSD) of the knee, comparing prevalence and contributing factors in healthy and osteoarthritic (OA) cohorts.

Methods

A case-control radiological study was undertaken comparing 500 healthy knees (250 adults) with a consecutive sample of 710 OA knees (355 adults) undergoing bilateral total knee arthroplasty. The mechanical hip-knee-ankle angle (mHKA), medial proximal tibial angle (MPTA), and lateral distal femoral angle (LDFA) were determined for each knee, and the arithmetic hip-knee-ankle angle (aHKA), joint line obliquity, and Coronal Plane Alignment of the Knee (CPAK) types were calculated. WSD was defined as a varus mHKA of < -2° in one limb and a valgus mHKA of > 2° in the contralateral limb. The primary outcome was the proportional difference in WSD prevalence between healthy and OA groups. Secondary outcomes were the proportional difference in WSD prevalence between constitutional varus and valgus CPAK types, and to explore associations between predefined variables and WSD within the OA group.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1059 - 1066
1 Oct 2024
Konishi T Hamai S Tsushima H Kawahara S Akasaki Y Yamate S Ayukawa S Nakashima Y

Aims

The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs).

Methods

A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The ­Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims. Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. Methods. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference. Results. FA showed significantly lower rates of medial and lateral SPI (2.9% and 2.2%) compared to KA (45.3%; p < 0.001, and 25.5%; p < 0.001) and compared to MA (52.6%; p < 0.001 and 29.9%; p < 0.001). There was no difference in medial and lateral SPI between KA and MA (p = 0.228 and p = 0.417, respectively). FA showed significantly lower rates of severe medial and lateral SPI (0 and 0%) compared to KA (8.0%; p < 0.001 and 7.3%; p = 0.001) and compared to MA (10.2%; p < 0.001 and 4.4%; p = 0.013). There was no difference in severe medial and lateral SPI between KA and MA (p = 0.527 and p = 0.307, respectively). MA resulted in thinner resections than KA in medial extension (mean difference (MD) 1.4 mm, SD 1.9; p < 0.001), medial flexion (MD 1.5 mm, SD 1.8; p < 0.001), and lateral extension (MD 1.1 mm, SD 1.9; p < 0.001). FA resulted in thinner resections than KA in medial extension (MD 1.6 mm, SD 1.4; p < 0.001) and lateral extension (MD 2.0 mm, SD 1.6; p < 0.001), but in thicker medial flexion resections (MD 0.8 mm, SD 1.4; p < 0.001). Conclusion. Mechanical and kinematic alignment (measured resection techniques) result in high rates of SPI. Pre-resection angular and translational adjustments with functional alignment, with typically smaller distal than posterior femoral resection, address this issue. Cite this article: Bone Jt Open 2024;5(8):681–687


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


Bone & Joint Open
Vol. 5, Issue 7 | Pages 592 - 600
18 Jul 2024
Faschingbauer M Hambrecht J Schwer J Martin JR Reichel H Seitz A

Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined. Results. No statistically significant differences were found regarding coronal alignment (p = 0.087 to p = 0.832). The medial congruent insert demonstrated restricted femoral roll back (mean medial 37.57 mm; lateral 36.34 mm), while the CR insert demonstrated the greatest roll back (medial 42.21 mm; lateral 37.88 mm; p < 0.001, respectively). Femorotibial rotation was greatest with the CR insert with 2.45° (SD 4.75°), then the UC insert with 1.31° (SD 4.15°; p < 0.001), and lowest with the medial congruent insert with 0.8° (SD 4.24°; p < 0.001). The most pronounced patella shift, but lowest patellar rotation, was noted with the CR insert. Conclusion. The MC insert demonstrated the highest level of constraint of these inserts. Femoral roll back, femorotibial rotation, and single bony rotations were lowest with the MC insert. The patella showed less shifting with the MC insert, but there was significantly increased rotation. While the medial congruent insert was found to have highest constraint, it remains uncertain if this implant recreates native knee kinematics or if this will result in improved patient satisfaction. Cite this article: Bone Jt Open 2024;5(7):592–600


Bone & Joint Open
Vol. 5, Issue 7 | Pages 570 - 580
10 Jul 2024
Poursalehian M Ghaderpanah R Bagheri N Mortazavi SMJ

Aims

To systematically review the predominant complication rates and changes to patient-reported outcome measures (PROMs) following osteochondral allograft (OCA) transplantation for shoulder instability.

Methods

This systematic review, following PRISMA guidelines and registered in PROSPERO, involved a comprehensive literature search using PubMed, Embase, Web of Science, and Scopus. Key search terms included “allograft”, “shoulder”, “humerus”, and “glenoid”. The review encompassed 37 studies with 456 patients, focusing on primary outcomes like failure rates and secondary outcomes such as PROMs and functional test results.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims

Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear.

Methods

A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.


Bone & Joint Open
Vol. 5, Issue 5 | Pages 374 - 384
1 May 2024
Bensa A Sangiorgio A Deabate L Illuminati A Pompa B Filardo G

Aims

Robotic-assisted unicompartmental knee arthroplasty (R-UKA) has been proposed as an approach to improve the results of the conventional manual UKA (C-UKA). The aim of this meta-analysis was to analyze the studies comparing R-UKA and C-UKA in terms of clinical outcomes, radiological results, operating time, complications, and revisions.

Methods

The literature search was conducted on three databases (PubMed, Cochrane, and Web of Science) on 20 February 2024 according to the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Inclusion criteria were comparative studies, written in the English language, with no time limitations, on the comparison of R-UKA and C-UKA. The quality of each article was assessed using the Downs and Black Checklist for Measuring Quality.