Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims

Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis.

Methods

The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 212 - 218
9 Mar 2023
Buchalter DB Kirby DJ Anil U Konda SR Leucht P

Aims

Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability.

Methods

A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 571 - 573
2 Sep 2021
Beverly MC Murray DW


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives

We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection.

Materials and Methods

Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn.


Bone & Joint 360
Vol. 4, Issue 3 | Pages 23 - 24
1 Jun 2015

The June 2015 Trauma Roundup360 looks at: HIV-related implant surgery in trauma; Major transfusion under the spotlight; Surgery and mortality in elderly acetabular fractures; Traction pin safety; Obesity and trauma; Salvage of acetabular fixation in the longer term


Bone & Joint 360
Vol. 1, Issue 6 | Pages 34 - 35
1 Dec 2012
Rowlands LCTK


Bone & Joint 360
Vol. 1, Issue 5 | Pages 2 - 7
1 Oct 2012
Belmont Jr PJ Hetz S Potter BK

We live in troubled times. Increased opposition reliance on explosive devices, the widespread use of individual and vehicular body armour, and the improved survival of combat casualties have created many complex musculoskeletal injuries in the wars in Iraq and Afghanistan. Explosive mechanisms of injury account for 75% of all musculoskeletal combat casualties. Throughout all the echelons of care medical staff practice consistent treatment strategies of damage control orthopaedics including tourniquets, antibiotics, external fixation, selective amputations and vacuum-assisted closure. Complications, particularly infection and heterotopic ossification, remain frequent, and re-operations are common. Meanwhile, non-combat musculoskeletal casualties are three times more frequent than those derived from combat and account for nearly 50% of all musculoskeletal casualties requiring evacuation from the combat zone.