Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
Bone & Joint Open
Vol. 5, Issue 11 | Pages 962 - 970
4 Nov 2024
Suter C Mattila H Ibounig T Sumrein BO Launonen A Järvinen TLN Lähdeoja T Rämö L

Aims. Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before. Methods. Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method. Results. The RUSHU demonstrated good interobserver reliability with an ICC of 0.78 (95% CI 0.72 to 0.83) at six weeks and 0.77 (95% CI 0.71 to 0.82) at 12 weeks. Intraobserver reproducibility was good or excellent for all analyses. Area under the curve in the ROC analysis was 0.83 (95% CI 0.77 to 0.88) at six weeks and 0.89 (95% CI 0.84 to 0.93) at 12 weeks, indicating excellent discrimination. The optimal cut-off values for predicting nonunion were ≤ eight points at six weeks and ≤ nine points at 12 weeks, providing the best specificity-sensitivity trade-off. Conclusion. The RUSHU proves to be a reliable and reproducible radiological scoring system that aids in identifying patients at risk of nonunion at both six and 12 weeks post-injury during non-surgical treatment of humeral shaft fractures. The statistically optimal cut-off values for predicting nonunion are ≤ eight at six weeks and ≤ nine points at 12 weeks post-injury


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims

This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA).

Methods

This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 343 - 349
22 Apr 2024
Franssen M Achten J Appelbe D Costa ML Dutton S Mason J Gould J Gray A Rangan A Sheehan W Singh H Gwilym SE

Aims. Fractures of the humeral shaft represent 3% to 5% of all fractures. The most common treatment for isolated humeral diaphysis fractures in the UK is non-operative using functional bracing, which carries a low risk of complications, but is associated with a longer healing time and a greater risk of nonunion than surgery. There is an increasing trend to surgical treatment, which may lead to quicker functional recovery and lower rates of fracture nonunion than functional bracing. However, surgery carries inherent risk, including infection, bleeding, and nerve damage. The aim of this trial is to evaluate the clinical and cost-effectiveness of functional bracing compared to surgical fixation for the treatment of humeral shaft fractures. Methods. The HUmeral SHaft (HUSH) fracture study is a multicentre, prospective randomized superiority trial of surgical versus non-surgical interventions for humeral shaft fractures in adult patients. Participants will be randomized to receive either functional bracing or surgery. With 334 participants, the trial will have 90% power to detect a clinically important difference for the Disabilities of the Arm, Shoulder and Hand questionnaire score, assuming 20% loss to follow-up. Secondary outcomes will include function, pain, quality of life, complications, cost-effectiveness, time off work, and ability to drive. Discussion. The results of this trial will provide evidence regarding clinical and cost-effectiveness between surgical and non-surgical treatment of humeral shaft fractures. Ethical approval has been obtained from East of England – Cambridge Central Research Ethics Committee. Publication is anticipated to occur in 2024. Cite this article: Bone Jt Open 2024;5(4):343–349


Bone & Joint Research
Vol. 11, Issue 11 | Pages 814 - 825
14 Nov 2022
Ponkilainen V Kuitunen I Liukkonen R Vaajala M Reito A Uimonen M

Aims

The aim of this systematic review and meta-analysis was to gather epidemiological information on selected musculoskeletal injuries and to provide pooled injury-specific incidence rates.

Methods

PubMed (National Library of Medicine) and Scopus (Elsevier) databases were searched. Articles were eligible for inclusion if they reported incidence rate (or count with population at risk), contained data on adult population, and were written in English language. The number of cases and population at risk were collected, and the pooled incidence rates (per 100,000 person-years) with 95% confidence intervals (CIs) were calculated by using either a fixed or random effects model.


Bone & Joint Open
Vol. 3, Issue 7 | Pages 566 - 572
18 Jul 2022
Oliver WM Molyneux SG White TO Clement ND Duckworth AD

Aims. The primary aim was to estimate the cost-effectiveness of routine operative fixation for all patients with humeral shaft fractures. The secondary aim was to estimate the health economic implications of using a Radiographic Union Score for HUmeral fractures (RUSHU) of < 8 to facilitate selective fixation for patients at risk of nonunion. Methods. From 2008 to 2017, 215 patients (mean age 57 yrs (17 to 18), 61% female (n = 130/215)) with a nonoperatively managed humeral diaphyseal fracture were retrospectively identified. Union was achieved in 77% (n = 165/215) after initial nonoperative management, with 23% (n = 50/215) uniting after surgery for nonunion. The EuroQol five-dimension three-level health index (EQ-5D-3L) was obtained via postal survey. Multiple regression was used to determine the independent influence of patient, injury, and management factors upon the EQ-5D-3L. An incremental cost-effectiveness ratio (ICER) of < £20,000 per quality-adjusted life-year (QALY) gained was considered cost-effective. Results. At a mean of 5.4 yrs (1.2 to 11.0), the mean EQ-5D-3L was 0.736 (95% confidence interval (CI) 0.697 to 0.775). Adjusted analysis demonstrated the EQ-5D-3L was inferior among patients who united after nonunion surgery (β = 0.103; p = 0.032). Offering routine fixation to all patients to reduce the rate of nonunion would be associated with increased treatment costs of £1,542/patient, but would confer a potential EQ-5D-3L benefit of 0.120/patient over the study period. The ICER of routine fixation was £12,850/QALY gained. Selective fixation based on a RUSHU < 8 at six weeks post-injury would be associated with reduced treatment costs (£415/patient), and would confer a potential EQ-5D-3L benefit of 0.335 per ‘at-risk patient’. Conclusion. Routine fixation for patients with humeral shaft fractures to reduce the rate of nonunion observed after nonoperative management appears to be a cost-effective intervention at five years post-injury. Selective fixation for patients at risk of nonunion based on their RUSHU may confer even greater cost-effectiveness, given the potential savings and improvement in health-related quality of life. Cite this article: Bone Jt Open 2022;3(7):566–572


Bone & Joint Open
Vol. 3, Issue 3 | Pages 236 - 244
14 Mar 2022
Oliver WM Molyneux SG White TO Clement ND Duckworth AD

Aims. The primary aim of this study was to determine the rates of return to work (RTW) and sport (RTS) following a humeral shaft fracture. The secondary aim was to identify factors independently associated with failure to RTW or RTS. Methods. From 2008 to 2017, all patients with a humeral diaphyseal fracture were retrospectively identified. Patient demographics and injury characteristics were recorded. Details of pre-injury employment, sporting participation, and levels of return post-injury were obtained via postal questionnaire. The University of California, Los Angeles (UCLA) Activity Scale was used to quantify physical activity among active patients. Regression was used to determine factors independently associated with failure to RTW or RTS. Results. The Work Group comprised 177 patients in employment prior to injury (mean age 47 years (17 to 78); 51% female (n = 90)). Mean follow-up was 5.8 years (1.3 to 11). Overall, 85% (n = 151) returned to work at a mean of 14 weeks post-injury (0 to 104), but only 60% (n = 106) returned full-time to their previous employment. Proximal-third fractures (adjusted odds ratio (aOR) 4.0 (95% confidence interval (CI) 1.2 to 14.2); p = 0.029) were independently associated with failure to RTW. The Sport Group comprised 182 patients involved in sport prior to injury (mean age 52 years (18 to 85); 57% female (n = 104)). Mean follow-up was 5.4 years (1.3 to 11). The mean UCLA score reduced from 6.9 (95% CI 6.6 to 7.2) before injury to 6.1 (95% CI 5.8 to 6.4) post-injury (p < 0.001). There were 89% (n = 162) who returned to sport: 8% (n = 14) within three months, 34% (n = 62) within six months, and 70% (n = 127) within one year. Age ≥ 60 years was independently associated with failure to RTS (aOR 3.0 (95% CI 1.1 to 8.2); p = 0.036). No other factors were independently associated with failure to RTW or RTS. Conclusion. Most patients successfully return to work and sport following a humeral shaft fracture, albeit at a lower level of physical activity. Patients aged ≥ 60 yrs and those with proximal-third diaphyseal fractures are at increased risk of failing to return to activity. Cite this article: Bone Jt Open 2022;3(3):236–244


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1328 - 1330
1 Aug 2021
Gwilym SE Perry DC Costa ML


Bone & Joint Open
Vol. 1, Issue 7 | Pages 424 - 430
17 Jul 2020
Baxter I Hancock G Clark M Hampton M Fishlock A Widnall J Flowers M Evans O

Aims

To determine the impact of COVID-19 on orthopaediatric admissions and fracture clinics within a regional integrated care system (ICS).

Methods

A retrospective review was performed for all paediatric orthopaedic patients admitted across the region during the recent lockdown period (24 March 2020 to 10 May 2020) and the same period in 2019. Age, sex, mechanism, anatomical region, and treatment modality were compared, as were fracture clinic attendances within the receiving regional major trauma centre (MTC) between the two periods.


Bone & Joint 360
Vol. 8, Issue 6 | Pages 26 - 29
1 Dec 2019


Bone & Joint 360
Vol. 8, Issue 3 | Pages 37 - 40
1 Jun 2019


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1066 - 1073
1 Aug 2018
Nishida K Hashizume K Nasu Y Ozawa M Fujiwara K Inoue H Ozaki T

Aims

The aim of this study was to report the mid-term clinical outcome of cemented unlinked J-alumina ceramic elbow (JACE) arthroplasties when used in patients with rheumatoid arthritis (RA).

Patients and Methods

We retrospectively reviewed 87 elbows, in 75 patients with RA, which was replaced using a cemented JACE total elbow arthroplasty (TEA) between August 2003 and December 2012, with a follow-up of 96%. There were 72 women and three men, with a mean age of 62 years (35 to 79). The mean follow-up was nine years (2 to 14). The clinical condition of each elbow before and after surgery was assessed using the Mayo Elbow Performance Index (MEPI, 0 to 100 points). Radiographic loosening was defined as a progressive radiolucent line of >1 mm that was completely circumferential around the prosthesis.


Bone & Joint 360
Vol. 7, Issue 2 | Pages 30 - 33
1 Apr 2018


Bone & Joint 360
Vol. 7, Issue 1 | Pages 27 - 30
1 Feb 2018


Bone & Joint 360
Vol. 7, Issue 1 | Pages 22 - 24
1 Feb 2018


Bone & Joint 360
Vol. 6, Issue 4 | Pages 20 - 22
1 Aug 2017


Bone & Joint 360
Vol. 6, Issue 3 | Pages 33 - 35
1 Jun 2017


Bone & Joint 360
Vol. 5, Issue 5 | Pages 22 - 25
1 Oct 2016


Bone & Joint 360
Vol. 5, Issue 5 | Pages 37 - 38
1 Oct 2016
Das A