Advertisement for orthosearch.org.uk
Results 1 - 100 of 312
Results per page:
Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time predictions models, which may lead to improved operating room planning and efficiency. Cite this article: Bone Jt Open 2022;3(5):383–389


Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims. Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. Methods. Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%. Results. At 13.8%, only the Pico technique measured under the threshold. At 17.6% and 22.9% bone loss all techniques measured above the threshold. The Pico technique was 97.1% accurate, but had a high false-negative rate and poor sensitivity underestimating the need for grafting. The Sugaya technique had 100% specificity but 25% of the measurements were incorrectly above the threshold. A contralateral COBF underestimates the area by 16% and the diameter by 5 to 7%. Conclusion. No one method stands out as being truly accurate and clinicians need to be aware of the limitations of their chosen technique. They are not interchangeable, and caution must be used when reading the literature as comparisons are not reliable. Cite this article: Bone Jt Open 2023;4(7):478–489


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Bone & Joint Open
Vol. 2, Issue 11 | Pages 997 - 1003
29 Nov 2021
Dean BJF

Aims

Current National Institute for Health and Clinical Excellence (NICE) guidance advises that MRI direct from the emergency department (ED) should be considered for suspected scaphoid fractures. This study reports the current management of suspected scaphoid fractures in the UK and assesses adherence with NICE guidance.

Methods

This national cross-sectional study was carried out at 87 NHS centres in the UK involving 122 EDs and 184 minor injuries units (MIUs). The primary outcome was availability of MRI imaging direct from the ED. We also report the specifics of patient management pathways for suspected scaphoid fractures in EDs, MIUs, and orthopaedic services. Overall, 62 of 87 centres (71%) had a guideline for the management of suspected scaphoid fractures.


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1067 - 1071
2 Dec 2024
Salzmann M Kropp E Prill R Ramadanov N Adriani M Becker R

Aims. The transepicondylar axis is a well-established reference for the determination of femoral component rotation in total knee arthroplasty (TKA). However, when severe bone loss is present in the femoral condyles, rotational alignment can be more complicated. There is a lack of validated landmarks in the supracondylar region of the distal femur. Therefore, the aim of this study was to analyze the correlation between the surgical transepicondylar axis (sTEA) and the suggested dorsal cortex line (DCL) in the coronal plane and the inter- and intraobserver reliability of its CT scan measurement. Methods. A total of 75 randomly selected CT scans were measured by three experienced surgeons independently. The DCL was defined in the coronal plane as a tangent to the dorsal femoral cortex located 75 mm above the joint line in the frontal plane. The difference between sTEA and DCL was calculated. Descriptive statistics and angulation correlations were generated for the sTEA and DCL, as well as for the distribution of measurement error for intra- and inter-rater reliability. Results. The external rotation of the DCL to the sTEA was a mean of 9.47° (SD 3.06°), and a median of 9.2° (IQR 7.45° to 11.60°), with a minimum value of 1.7° and maximum of 16.3°. The measurements of the DCL demonstrated very good to excellent test-retest and inter-rater reliability coefficients (intraclass correlation coefficient 0.80 to 0.99). Conclusion. This study reveals a correlation between the sTEA and the DCL. Overall, 10° of external rotation of the dorsal femoral cortical bone to the sTEA may serve as a reliable landmark for initial position of the femoral component. Surgeons should be aware that there are outliers in this study in up to 17% of the measurements, which potentially could result in deviations of femoral component rotation. Cite this article: Bone Jt Open 2024;5(12):1067–1071


Bone & Joint Research
Vol. 10, Issue 12 | Pages 820 - 829
15 Dec 2021
Schmidutz F Schopf C Yan SG Ahrend M Ihle C Sprecher C

Aims. The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). Methods. A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability. Results. The CBT could accurately be determined on XRs and highly correlated to those determined on CT scans (r = 0.87 to 0.93). The CBTavg index of the XRs significantly correlated with the BMD measured by DXA (r = 0.78) and HR-pQCT (r = 0.63), as did the CBTg index with the DXA (r = 0.55) and HR-pQCT (r = 0.64) (all p < 0.001). A high correlation of the BMD and CBT was observed between paired specimens (r = 0.79 to 0.96). The intra- and inter-rater reliability was excellent (ICC 0.79 to 0.92). Conclusion. The cortical index (CBTavg) at the distal radius shows a close correlation to the local BMD. It thus can serve as an initial screening tool to estimate the local bone quality if quantitative BMD measurements are unavailable, and enhance decision-making in acute settings on fracture management or further osteoporosis screening. Cite this article: Bone Joint Res 2021;10(12):820–829


Bone & Joint Open
Vol. 2, Issue 10 | Pages 825 - 833
8 Oct 2021
Dailey HL Schwarzenberg P Webb, III EB Boran SAM Guerin S Harty JA

Aims. The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances fracture healing compared to static interlocking. Methods. Patients were treated in a single level I trauma centre over a 2.5-year period. Group allocation was not randomized; both the micromotion nail and standard-of-care static locking nails (control group) were commercially available and selected at the discretion of the treating surgeons. Injury risk levels were quantified using the Nonunion Risk Determination (NURD) score. Radiological healing was assessed until 24 weeks or clinical union. Low-dose CT scans were acquired at 12 weeks and virtual mechanical testing was performed to objectively assess structural bone healing. Results. A total of 37 micromotion patients and 46 control patients were evaluated. There were no significant differences between groups in terms of age, sex, the proportion of open fractures, or NURD score. There were no nonunions (0%) in the micromotion group versus five (11%) in the control group. The proportion of fractures united was significantly higher in the micromotion group compared to control at 12 weeks (54% vs 30% united; p = 0.043), 18 weeks (81% vs 59%; p = 0.034), and 24 weeks (97% vs 74%; p = 0.005). Structural bone healing scores as assessed by CT scans tended to be higher with micromotion compared to control and this difference reached significance in patients who had biological comorbidities such as smoking. Conclusion. In this pilot study, micromotion fixation was associated with improved healing compared to standard tibial nailing. Further prospective clinical studies will be needed to assess the strength and generalizability of any potential benefits of micromotion fixation. Cite this article: Bone Jt Open 2021;2(10):825–833


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison. Methods. A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis. Results. There were 127 feet with an IMA > 9°. Both RH and ITP severities correlated significantly with IMA severity. RH and ITP were also significantly associated with each other, and the pronation deformities of these feet are probably related to extrinsic factors. There were also feet with discrepancies between their RH and ITP severities, possibly due to intrinsic torsion of the first metatarsal. Conclusion. Both RH and ITP are reliable first metatarsal pronation signs correlating to the metatarsus primus varus deformity of hallux valgus feet. They should be used more for preoperative and postoperative assessment. Cite this article: Bone Jt Open 2024;5(11):1037–1040


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims. The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures. Methods. A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis. Results. Of 170 patients, 22 (13%) subsequently received a THA. Native hip survival in patients with a step-off ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 94% vs 70% vs 74%). Native hip survival in patients with a gap ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 100% vs 84% vs 78%). Step-off displacement > 2 mm (> 2 to 4 mm hazard ratio (HR) 4.9, > 4 mm HR 5.6) and age > 60 years (HR 2.9) were independent predictors for conversion to THA at follow-up. Conclusion. Patients with minimally displaced acetabular fractures who opt for nonoperative fracture treatment may be informed that fracture displacement (e.g. gap and step-off) up to 2 mm, as measured on CT images, results in limited risk on conversion to THA. Step-off ≥ 2 mm and age > 60 years are predictors for conversion to THA and can be helpful in the shared decision-making process. Cite this article: Bone Joint J 2023;105-B(9):1020–1029


Bone & Joint Open
Vol. 5, Issue 1 | Pages 46 - 52
19 Jan 2024
Assink N ten Duis K de Vries JPM Witjes MJH Kraeima J Doornberg JN IJpma FFA

Aims. Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery. Methods. A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group. Results. A total of 15 patients were treated with 3D surgical planning in which 83 screws were placed by using drilling guides. The median deviation of the achieved screw trajectory from the planned trajectory was 3.4° (interquartile range (IQR) 2.5 to 5.4) and the difference in entry points (i.e. plate position) was 3.0 mm (IQR 2.0 to 5.5) compared to the 3D preoperative planning. The length of 72 screws (86.7%) were according to the planning. Compared to the historical cohort, 3D-guided surgery showed an improved surgical reduction in terms of median gap (3.1 vs 4.7 mm; p = 0.126) and step-off (2.9 vs 4.0 mm; p = 0.026). Conclusion. The use of 3D surgical planning including drilling guides was feasible, and facilitated accurate screw directions, screw lengths, and plate positioning. Moreover, the personalized approach improved fracture reduction as compared to a historical cohort. Cite this article: Bone Jt Open 2024;5(1):46–52


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for hip arthroscopy (hip-preservation surgery) for planning of bone resection. Hip impingement in flexion has implications for daily activities (e.g. putting on shoes), sports, and sex. Cite this article: Bone Joint Res 2023;12(1):22–32


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


Bone & Joint Open
Vol. 4, Issue 8 | Pages 612 - 620
21 Aug 2023
Martin J Johnson NA Shepherd J Dias J

Aims. There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. Methods. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress. Results. Overall, 90% to 30% fracture unions demonstrated a small, gradual increase in the Von Mises stress of all fracture patterns (16.0 MPa to 240.5 MPa). All fracture patterns showed a greater increase in Von Mises stress from 30% to 10% partial union (680.8 MPa to 6,288.6 MPa). Conclusion. Previous studies have suggested 25%, 50%, and 75% partial union as sufficient for resuming hand and wrist mobilization. This study shows that 30% union is sufficient to return to normal hand and wrist function in all three fracture patterns. Both 50% and 75% union are unnecessary and increase the risk of post-fracture stiffness. This study has also demonstrated the feasibility of finite element analysis (FEA) in scaphoid waist fracture research. FEA is a sustainable method which does not require the use of finite scaphoid cadavers, hence increasing accessibility into future scaphoid waist fracture-related research. Cite this article: Bone Jt Open 2023;4(8):612–620


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims. This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). Methods. This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA. Results. The value of GTVA was 20.9° (SD 4.7°) (95% CI 20.47° to 21.3°). Results of analysis of variance revealed that females had a statistically significant larger angle of 21.95° (SD 4.49°) compared to males, which were found to be 20.49° (SD 4.8°) (p = 0.001). Conclusion. This study identified a consistent relationship between palpable anatomical landmarks, enhancing IMN accuracy by utilizing 3D CT scans and replicating a 20.9° angle from the greater tuberosity to the transepicondylar axis. Using this angle as a secondary reference may help mitigate the complications associated with malrotation of the humerus following IMN. However, future trials are needed for clinical validation. Cite this article: Bone Jt Open 2024;5(10):929–936


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


Bone & Joint Open
Vol. 3, Issue 1 | Pages 61 - 67
18 Jan 2022
van Lingen CP Ettema HB Bosker BH Verheyen CCPM

Aims. Large-diameter metal-on-metal (MoM) total hip arthroplasty (THA) has demonstrated unexpected high failure rates and pseudotumour formation. The purpose of this prospective cohort study is to report ten-year results in order to establish revision rate, prevalence of pseudotumour formation, and relation with whole blood cobalt levels. Methods. All patients were recalled according to the guidelines of the Dutch Orthopaedic Association. They underwent clinical and radiographical assessments (radiograph and CT scan) of the hip prosthesis and whole blood cobalt ion measurements. Overall, 94 patients (95 hips) fulfilled our requirements for a minimum ten-year follow-up. Results. Mean follow-up was 10.9 years (10 to 12), with a cumulative survival rate of 82.4%. Reason for revision was predominantly pseudotumour formation (68%), apart from loosening, pain, infection, and osteolysis. The prevalence of pseudotumour formation around the prostheses was 41%, while our previous report of this cohort (with a mean follow-up of 3.6 years) revealed a 39% prevalence. The ten-year revision-free survival with pseudotumour was 66.7% and without pseudotumour 92.4% (p < 0.05). There was poor discriminatory ability for cobalt for pseudotumour formation. Conclusion. This prospective study reports a minimum ten-year follow-up of large-head MoM THA. Revision rates are high, with the main reason being the sequelae of pseudotumour formation, which were rarely observed after five years of implantation. Blood ion measurements show limited discriminatory capacity in diagnosing pseudotumour formation. Our results evidence that an early comprehensive follow-up strategy is essential for MoM THA to promptly identify and manage early complications and revise on time. After ten years follow-up, we do not recommend continuing routine CT scanning or whole cobalt blood measurements, but instead enrolling these patients in routine follow-up protocols for THA. Cite this article: Bone Jt Open 2022;3(1):61–67


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with hip arthroscopy and acetabular rim trimming or anteverting periacetabular osteotomy (PAO). Cite this article: Bone Jt Open 2021;2(10):813–824


Bone & Joint Open
Vol. 2, Issue 7 | Pages 552 - 561
28 Jul 2021
Werthel J Boux de Casson F Burdin V Athwal GS Favard L Chaoui J Walch G

Aims. The aim of this study was to describe a quantitative 3D CT method to measure rotator cuff muscle volume, atrophy, and balance in healthy controls and in three pathological shoulder cohorts. Methods. In all, 102 CT scans were included in the analysis: 46 healthy, 21 cuff tear arthropathy (CTA), 18 irreparable rotator cuff tear (IRCT), and 17 primary osteoarthritis (OA). The four rotator cuff muscles were manually segmented and their volume, including intramuscular fat, was calculated. The normalized volume (NV) of each muscle was calculated by dividing muscle volume to the patient’s scapular bone volume. Muscle volume and percentage of muscle atrophy were compared between muscles and between cohorts. Results. Rotator cuff muscle volume was significantly decreased in patients with OA, CTA, and IRCT compared to healthy patients (p < 0.0001). Atrophy was comparable for all muscles between CTA, IRCT, and OA patients, except for the supraspinatus, which was significantly more atrophied in CTA and IRCT (p = 0.002). In healthy shoulders, the anterior cuff represented 45% of the entire cuff, while the posterior cuff represented 40%. A similar partition between anterior and posterior cuff was also found in both CTA and IRCT patients. However, in OA patients, the relative volume of the anterior (42%) and posterior cuff (45%) were similar. Conclusion. This study shows that rotator cuff muscle volume is significantly decreased in patients with OA, CTA, or IRCT compared to healthy patients, but that only minimal differences can be observed between the different pathological groups. This suggests that the influence of rotator cuff muscle volume and atrophy (including intramuscular fat) as an independent factor of outcome may be overestimated. Cite this article: Bone Jt Open 2021;2(7):552–561


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre. Results. Both rotation centres could be restored within 5 mm in 94% and 92% of cases, respectively. The cemented undersized stem performed best, combining freedom of stem positioning and a large offset range. The uncemented straight stem performed well because of its large and well-chosen offset range, and despite the need for cortical bone contact limiting stem positioning. The cemented line-to-line stem performed less well due to a small range of sizes and offsets. The uncemented calcar-guided stem performed worst, despite 24 sizes and a large and well-chosen offset range. This was attributed to the calcar curvature restricting the stem insertion depth along the femoral axis. Conclusion. In the majority of non-deformed femora, leg length, offset, and anteversion can be restored accurately with non-modular stems during 3D templating. Failure to restore hip biomechanics is mostly due to surgical inaccuracy. Small calcar guided stems offer no advantage to restore hip biomechanics compared to more traditional designs. Cite this article: Bone Jt Open 2021;2(7):476–485


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims. Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results. The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion. It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841


Bone & Joint Research
Vol. 4, Issue 12 | Pages 190 - 194
1 Dec 2015
Kleinlugtenbelt YV Hoekstra M Ham SJ Kloen P Haverlag R Simons MP Bhandari M Goslings JC Poolman RW Scholtes VAB

Objectives. Current studies on the additional benefit of using computed tomography (CT) in order to evaluate the surgeons’ agreement on treatment plans for fracture are inconsistent. This inconsistency can be explained by a methodological phenomenon called ‘spectrum bias’, defined as the bias inherent when investigators choose a population lacking therapeutic uncertainty for evaluation. The aim of the study is to determine the influence of spectrum bias on the intra-observer agreement of treatment plans for fractures of the distal radius. Methods. Four surgeons evaluated 51 patients with displaced fractures of the distal radius at four time points: T1 and T2: conventional radiographs; T3 and T4: radiographs and additional CT scan (radiograph and CT). Choice of treatment plan (operative or non-operative) and therapeutic certainty (five-point scale: very uncertain to very certain) were rated. To determine the influence of spectrum bias, the intra-observer agreement was analysed, using Kappa statistics, for each degree of therapeutic certainty. . Results. In cases with high therapeutic certainty, intra-observer agreement based on radiograph was almost perfect (0.86 to 0.90), but decreased to moderate based on a radiograph and CT (0.47 to 0.60). In cases with high therapeutic uncertainty, intra-observer agreement was slight at best (-0.12 to 0.19), but increased to moderate based on the radiograph and CT (0.56 to 0.57). Conclusion. Spectrum bias influenced the outcome of this agreement study on treatment plans. An additional CT scan improves the intra-observer agreement on treatment plans for a fracture of the distal radius only when there is therapeutic uncertainty. Reporting and analysing intra-observer agreement based on the surgeon’s level of certainty is an appropriate method to minimise spectrum bias. Cite this article: Bone Joint Res 2015;4:190–194


Bone & Joint Open
Vol. 3, Issue 2 | Pages 158 - 164
17 Feb 2022
Buddhdev P Vallim F Slattery D Balakumar J

Aims. Slipped upper femoral epiphysis (SUFE) has well documented biochemical and mechanical risk factors. Femoral and acetabular morphologies seem to be equally important. Acetabular retroversion has a low prevalence in asymptomatic adults. Hips with dysplasia, osteoarthritis, and Perthes’ disease, however, have higher rates, ranging from 18% to 48%. The aim of our study was to assess the prevalence of acetabular retroversion in patients presenting with SUFE using both validated radiological signs and tomographical measurements. Methods. A retrospective review of all SUFE surgical cases presenting to the Royal Children’s Hospital, Melbourne, Australia, from 2012 to 2019 were evaluated. Preoperative plain radiographs were assessed for slip angle, validated radiological signs of retroversion, and standardized postoperative CT scans were used to assess cranial and mid-acetabular version. Results. In all, 116 SUFEs presented in 107 patients who underwent surgical intervention; 47 (52%) were male, with a mean age of 12.7 years (7.5 to 16.6). Complete radiological data was available for 91 patients (99 hips) with adequate axial CT imaging of both hips. Overall, 82 patients (82%) underwent pinning in situ (PIS), with subcapital realignment surgery (SRS) performed in 17 patients (18%) (slip angles > 75°). Contralateral prophylactic PIS was performed in 72 patients (87%). On the slip side, 62 patients (68%) had one or more radiological sign of retroversion. Tomographical acetabular retroversion was more pronounced cranially than caudally of the acetabulum on both the affected side and the contralateral side (p < 0.001) as expected in the normal population. Increasing severity of the slip was found to be directly proportional to the degree of reduction in cranial and central acetabular version (p < 0.05) in the SUFE hips. Conclusion. Acetabular retroversion is more prevalent in patients with SUFE than previously reported, and have been shown be correlated to the severity of the slip presentation. The presence of radiological signs of acetabular retroversion could be used to justify prophylactic contralateral pinning. Cite this article: Bone Jt Open 2022;3(2):158–164


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims. Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (. 99m. Tc-UBI. 29-41. -Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. Methods. 99m. Tc-UBI. 29-41. -Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. Results. Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. Conclusion. The hybrid tracer . 99m. Tc-UBI. 29-41. -Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies. Cite this article: Bone Joint Res 2023;12(1):72–79


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


Bone & Joint Research
Vol. 7, Issue 6 | Pages 379 - 387
1 Jun 2018
Hansen L De Raedt S Jørgensen PB Mygind-Klavsen B Kaptein B Stilling M

Objectives. To validate the precision of digitally reconstructed radiograph (DRR) radiostereometric analysis (RSA) and the model-based method (MBM) RSA with respect to benchmark marker-based (MM) RSA for evaluation of kinematics in the native hip joint. Methods. Seven human cadaveric hemipelves were CT scanned and bone models were segmented. Tantalum beads were placed in the pelvis and proximal femoral bone. RSA recordings of the hips were performed during flexion, adduction and internal rotation. Stereoradiographic recordings were all analyzed with DRR, MBM and MM. Migration results for the MBM and DRR with respect to MM were compared. Precision was assessed as systematic bias (mean difference) and random variation (Pitman’s test for equal variance). Results. A total of 288 dynamic RSA images were analyzed. Systematic bias for DRR and MBM with respect to MM in translations (p < 0.018 mm) and rotations (p < 0.009°) were approximately 0. Pitman’s test showed lower random variation in all degrees of freedom for DRR compared with MBM (p < 0.001). Conclusion. Systematic error was approximately 0 for both DRR or MBM. However, precision of DRR was statistically significantly better than MBM. Since DRR does not require marker insertion it can be used for investigation of preoperative hip kinematics in comparison with the postoperative results after joint preserving hip surgery. . Cite this article: L. Hansen, S. De Raedt, P. B. Jørgensen, B. Mygind-Klavsen, B. Kaptein, M. Stilling. Marker free model-based radiostereometric analysis for evaluation of hip joint kinematics: A validation study. Bone Joint Res 2018;7:379–387. DOI: 10.1302/2046-3758.76.BJR-2017-0268.R1


Bone & Joint Research
Vol. 6, Issue 10 | Pages 577 - 583
1 Oct 2017
Sallent A Vicente M Reverté MM Lopez A Rodríguez-Baeza A Pérez-Domínguez M Velez R

Objectives. To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection. Methods. CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s t-test and Mann–Whitney U test were used. Results. Compared with the manual technique, PSI-guided osteotomies improved accuracy by a mean 9.6 mm (p < 0.008) in the sacroiliac osteotomies, 6.2 mm (p < 0.008) and 5.8 mm (p < 0.032) in the biplanar supra-acetabular, 3 mm (p < 0.016) in the ischial and 2.2 mm (p < 0.032) and 2.6 mm (p < 0.008) in the parallel iliopubic osteotomies, with a mean linear deviation of 4.9 mm (p < 0.001) for all osteotomies. Of the manual osteotomies, 53% (n = 16) had a linear deviation > 5 mm and 27% (n = 8) were > 10 mm. In the PSI cases, deviations were 10% (n = 3) and 0 % (n = 0), respectively. For angular deviation from pre-operative plans, we observed a mean improvement of 7.06° (p < 0.001) in pitch and 2.94° (p < 0.001) in roll, comparing PSI and the standard manual technique. Conclusion. In an experimental study, computer-assisted planning and PSIs improved accuracy in pelvic tumour resections, bringing osteotomy results closer to the parameters set in pre-operative planning, as compared with standard manual techniques. Cite this article: A. Sallent, M. Vicente, M. M. Reverté, A. Lopez, A. Rodríguez-Baeza, M. Pérez-Domínguez, R. Velez. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study. Bone Joint Res 2017;6:577–583. DOI: 10.1302/2046-3758.610.BJR-2017-0094.R1


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


Bone & Joint 360
Vol. 3, Issue 5 | Pages 33 - 35
1 Oct 2014

The October 2014 Research Roundup. 360 . looks at: unpicking syndesmotic injuries: CT scans evaluated; surgical scrub suits and sterility in theatre; continuous passive motion and knee injuries; whether pain at night is melatonin related;venous thromboembolic disease following spinal surgery; clots in lower limb plasters; immune-competent cells in Achilles tendinopathy; and infection in orthopaedics


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res 2016;5:419–426


Bone & Joint Research
Vol. 6, Issue 4 | Pages 245 - 252
1 Apr 2017
Fu M Ye Q Jiang C Qian L Xu D Wang Y Sun P Ouyang J

Objectives. Many studies have investigated the kinematics of the lumbar spine and the morphological features of the lumbar discs. However, the segment-dependent immediate changes of the lumbar intervertebral space height during flexion-extension motion are still unclear. This study examined the changes of intervertebral space height during flexion-extension motion of lumbar specimens. Methods. First, we validated the accuracy and repeatability of a custom-made mechanical loading equipment set-up. Eight lumbar specimens underwent CT scanning in flexion, neural, and extension positions by using the equipment set-up. The changes in the disc height and distance between adjacent two pedicle screw entry points (DASEP) of the posterior approach at different lumbar levels (L3/4, L4/5 and L5/S1) were examined on three-dimensional lumbar models, which were reconstructed from the CT images. Results. All the vertebral motion segments (L3/4, L4/5 and L5/S1) had greater changes in disc height and DASEP from neutral to flexion than from neutral to extension. The change in anterior disc height gradually increased from upper to lower levels, from neutral to flexion. The changes in anterior and posterior disc heights were similar at the L4/5 level from neutral to extension, but the changes in anterior disc height were significantly greater than those in posterior disc height at the L3/4 and L5/S1 levels, from neutral to extension. Conclusions. The lumbar motion segment showed level-specific changes in disc height and DASEP. The data may be helpful in understanding the physiologic dynamic characteristics of the lumbar spine and in optimising the parameters of lumbar surgical instruments. Cite this article: M. Fu, Q. Ye, C. Jiang, L. Qian, D. Xu, Y. Wang, P. Sun, J. Ouyang. The segment-dependent changes in lumbar intervertebral space height during flexion-extension motion. Bone Joint Res 2017;6:245–252. DOI: 10.1302/2046-3758.64.BJR-2016-0245.R1


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


Bone & Joint Research
Vol. 3, Issue 5 | Pages 139 - 145
1 May 2014
Islam K Dobbe A Komeili A Duke K El-Rich M Dhillon S Adeeb S Jomha NM

Objective. The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. . Methods. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. . Results. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. . Conclusions. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45


Bone & Joint 360
Vol. 1, Issue 3 | Pages 14 - 16
1 Jun 2012

The June 2012 Foot & Ankle Roundup. 360. looks at: the Achilles tendon Total Rupture Score (ATRS); endoscopic treatment of Haglund’s syndrome; whether it is worth removing metalwork; hyaluronic acid injection; thromboembolic events after fracture fixation in the ankle; whether surgeons are as good as CT scans for OCD of the talus; proximal fractures of the fifth metatarsal; nerve blocks for hallux valgus surgery; chronic osteomyelitis in the non-diabetic patient; Charcot arthropathy


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims

Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions.

Methods

A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 252 - 259
28 Mar 2024
Syziu A Aamir J Mason LW

Aims

Posterior malleolar (PM) fractures are commonly associated with ankle fractures, pilon fractures, and to a lesser extent tibial shaft fractures. The tibialis posterior (TP) tendon entrapment is a rare complication associated with PM fractures. If undiagnosed, TP entrapment is associated with complications, ranging from reduced range of ankle movement to instability and pes planus deformities, which require further surgeries including radical treatments such as arthrodesis.

Methods

The inclusion criteria applied in PubMed, Scopus, and Medline database searches were: all adult studies published between 2012 and 2022; and studies written in English. Outcome of TP entrapment in patients with ankle injuries was assessed by two reviewers independently.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 239 - 246
1 Jun 2016
Li P Qian L Wu WD Wu CF Ouyang J

Objectives. Pedicle-lengthening osteotomy is a novel surgery for lumbar spinal stenosis (LSS), which achieves substantial enlargement of the spinal canal by expansion of the bilateral pedicle osteotomy sites. Few studies have evaluated the impact of this new surgery on spinal canal volume (SCV) and neural foramen dimension (NFD) in three different types of LSS patients. Methods. CT scans were performed on 36 LSS patients (12 central canal stenosis (CCS), 12 lateral recess stenosis (LRS), and 12 foraminal stenosis (FS)) at L4-L5, and on 12 normal (control) subjects. Mimics 14.01 workstation was used to reconstruct 3D models of the L4-L5 vertebrae and discs. SCV and NFD were measured after 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm pedicle-lengthening osteotomies at L4 and/or L5. One-way analysis of variance was used to examine between-group differences. Results. In the intact state, SVC and NFD were significantly larger in the control group compared with the LSS groups (P<0.05). After lengthening at L4, the percentage increase in SCV (per millimetre) was LRS>CCS>FS>Control. After lengthening at L5 and L4-L5, the percentage increase in SCV (per millimetre) was LRS>FS>CCS>Control. After lengthening at L4 and L4-L5, the percentage increase in NFD (per millimetre) was FS>CCS>LRS>Control. After lengthening at L5, the percentage increase in NFD (per millimetre) was CCS>LRS>control>FS. Conclusions. LRS patients are the most suitable candidates for treatment with pedicle-lengthening osteotomy. Lengthening L4 pedicles produced larger percentage increases in NFD than lengthening L5 pedicles (p < 0.05). Lengthening L4 pedicles may be the most effective option for relieving foraminal compression in LSS patients. Cite this article: P. Li, L. Qian, W. D. Wu, C. F. Wu, J. Ouyang. Impact of pedicle-lengthening osteotomy on spinal canal volume and neural foramen size in three types of lumbar spinal stenosis. Bone Joint Res 2016;5:239–246. DOI: 10.1302/2046-3758.56.2000469


Bone & Joint Open
Vol. 4, Issue 11 | Pages 889 - 898
23 Nov 2023
Clement ND Fraser E Gilmour A Doonan J MacLean A Jones BG Blyth MJG

Aims

To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA).

Methods

This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.


Bone & Joint Research
Vol. 1, Issue 4 | Pages 42 - 49
1 Apr 2012
Kwon Y Mellon SJ Monk P Murray DW Gill HS

Objectives. Pseudotumours (abnormal peri-prosthetic soft-tissue reactions) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have been associated with elevated metal ion levels, suggesting that excessive wear may occur due to edge-loading of these MoM implants. This study aimed to quantify in vivo edge-loading in MoMHRA patients with and without pseudotumours during functional activities. Methods. The duration and magnitude of edge-loading in vivo was quantified during functional activities by combining the dynamic hip joint segment contact force calculated from the three-dimensional (3D) motion analysis system with the 3D reconstruction of orientation of the acetabular component and each patient’s specific hip joint centre, based on CT scans. Results. Edge-loading in the hips with pseudotumours occurred with a four-fold increase in duration and magnitude of force compared with the hips without pseudotumours (p = 0.02). Conclusions. The study provides the first in vivo evidence to support that edge-loading is an important mechanism that leads to localised excessive wear (edge-wear), with subsequent elevation of metal ion levels in MoMHRA patients with pseudotumours


Bone & Joint Open
Vol. 4, Issue 11 | Pages 832 - 838
3 Nov 2023
Pichler L Li Z Khakzad T Perka C Pumberger M Schömig F

Aims

Implant-related postoperative spondylodiscitis (IPOS) is a severe complication in spine surgery and is associated with high morbidity and mortality. With growing knowledge in the field of periprosthetic joint infection (PJI), equivalent investigations towards the management of implant-related infections of the spine are indispensable. To our knowledge, this study provides the largest description of cases of IPOS to date.

Methods

Patients treated for IPOS from January 2006 to December 2020 were included. Patient demographics, parameters upon admission and discharge, radiological imaging, and microbiological results were retrieved from medical records. CT and MRI were analyzed for epidural, paravertebral, and intervertebral abscess formation, vertebral destruction, and endplate involvement. Pathogens were identified by CT-guided or intraoperative biopsy, intraoperative tissue sampling, or implant sonication.


Aims

For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis.

Methods

We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives. We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods. The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results. A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion. The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418


Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims

The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM).

Methods

Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 668 - 675
3 Sep 2023
Aubert T Gerard P Auberger G Rigoulot G Riouallon G

Aims

The risk factors for abnormal spinopelvic mobility (SPM), defined as an anterior rotation of the spinopelvic tilt (∆SPT) ≥ 20° in a flexed-seated position, have been described. The implication of pelvic incidence (PI) is unclear, and the concept of lumbar lordosis (LL) based on anatomical limits may be erroneous. The distribution of LL, including a unusual shape in patients with a high lordosis, a low pelvic incidence, and an anteverted pelvis seems more relevant.

Methods

The clinical data of 311 consecutive patients who underwent total hip arthroplasty was retrospectively analyzed. We analyzed the different types of lumbar shapes that can present in patients to identify their potential associations with abnormal pelvic mobility, and we analyzed the potential risk factors associated with a ∆SPT ≥ 20° in the overall population.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims

Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS).

Methods

Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).


Bone & Joint Open
Vol. 5, Issue 1 | Pages 28 - 36
18 Jan 2024
Selmene MA Moreau PE Zaraa M Upex P Jouffroy P Riouallon G

Aims

Post-traumatic periprosthetic acetabular fractures are rare but serious. Few studies carried out on small cohorts have reported them in the literature. The aim of this work is to describe the specific characteristics of post-traumatic periprosthetic acetabular fractures, and the outcome of their surgical treatment in terms of function and complications.

Methods

Patients with this type of fracture were identified retrospectively over a period of six years (January 2016 to December 2021). The following data were collected: demographic characteristics, date of insertion of the prosthesis, details of the intervention, date of the trauma, characteristics of the fracture, and type of treatment. Functional results were assessed with the Harris Hip Score (HHS). Data concerning complications of treatment were collected.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 147 - 153
19 Feb 2024
Hazra S Saha N Mallick SK Saraf A Kumar S Ghosh S Chandra M

Aims

Posterior column plating through the single anterior approach reduces the morbidity in acetabular fractures that require stabilization of both the columns. The aim of this study is to assess the effectiveness of posterior column plating through the anterior intrapelvic approach (AIP) in the management of acetabular fractures.

Methods

We retrospectively reviewed the data from R G Kar Medical College, Kolkata, India, from June 2018 to April 2023. Overall, there were 34 acetabulum fractures involving both columns managed by medial buttress plating of posterior column. The posterior column of the acetabular fracture was fixed through the AIP approach with buttress plate on medial surface of posterior column. Mean follow-up was 25 months (13 to 58). Accuracy of reduction and effectiveness of this technique were measured by assessing the Merle d’Aubigné score and Matta’s radiological grading at one year and at latest follow-up.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

Methods

The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims

While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA.

Methods

A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective. The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing. . Methods. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint. Results. From non- to full-body-weight-bearing condition, the difference in the talus position relative to the calcaneus in the talocalcaneal joint was 0.6° more dorsiflexed (p = 0.032), 1.4° more everted (p = 0.026), 0.9 mm more anterior (p = 0.031) and 1.0 mm more proximal (p = 0.004) in stage II PTTD flatfoot compared with that in a healthy foot. The navicular position difference relative to the talus in the talonavicular joint was 3° more everted (p = 0.012), 1.3 mm more lateral (p = 0.024), 0.8 mm more anterior (p = 0.037) and 2.1 mm more proximal (p = 0.017). The cuboid position difference relative to the calcaneus in the calcaneocuboid joint did not change significantly in rotation and translation (all p ≥ 0.08). . Conclusion. Referring to a previous study regarding both the cadaveric foot and the live foot, joint instability occurred in the hindfoot in simulated weight-bearing condition in patients with stage II PTTD flatfoot. The method used in this study might be applied to clinical analysis of the aetiology and evolution of PTTD flatfoot, and may inform biomechanical analyses of the effects of foot surgery in the future. Cite this article: Bone Joint Res 2013;2:255–63


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 425 - 429
1 May 2024
Jeys LM Thorkildsen J Kurisunkal V Puri A Ruggieri P Houdek MT Boyle RA Ebeid W Botello E Morris GV Laitinen MK

Chondrosarcoma is the second most common surgically treated primary bone sarcoma. Despite a large number of scientific papers in the literature, there is still significant controversy about diagnostics, treatment of the primary tumour, subtypes, and complications. Therefore, consensus on its day-to-day treatment decisions is needed. In January 2024, the Birmingham Orthopaedic Oncology Meeting (BOOM) attempted to gain global consensus from 300 delegates from over 50 countries. The meeting focused on these critical areas and aimed to generate consensus statements based on evidence amalgamation and expert opinion from diverse geographical regions. In parallel, periprosthetic joint infection (PJI) in oncological reconstructions poses unique challenges due to factors such as adjuvant treatments, large exposures, and the complexity of surgery. The meeting debated two-stage revisions, antibiotic prophylaxis, managing acute PJI in patients undergoing chemotherapy, and defining the best strategies for wound management and allograft reconstruction. The objectives of the meeting extended beyond resolving immediate controversies. It sought to foster global collaboration among specialists attending the meeting, and to encourage future research projects to address unsolved dilemmas. By highlighting areas of disagreement and promoting collaborative research endeavours, this initiative aims to enhance treatment standards and potentially improve outcomes for patients globally. This paper sets out some of the controversies and questions that were debated in the meeting.

Cite this article: Bone Joint J 2024;106-B(5):425–429.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims

Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM.

Methods

With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 729 - 734
1 Jul 2023
Borghi A Gronchi A

Desmoid tumours are a rare fibroblastic proliferation of monoclonal origin, arising in deep soft-tissues. Histologically, they are characterized by locally aggressive behaviour and an inability to metastasize, and clinically by a heterogeneous and unpredictable course. Desmoid tumours can occur in any anatomical site, but commonly arise in the limbs. Despite their benign nature, they can be extremely disabling and sometimes life-threatening, causing severe pain and functional limitations. Their surgical management is complex and challenging, due to uncertainties surrounding the biological and clinical behaviour, rarity, and limited available literature. Resection has been the first-line approach for patients with a desmoid tumour but, during the last few decades, a shift towards a more conservative approach has occurred, with an initial ‘wait and see’ policy. Many medical and regional forms of treatment are also available for the management of this condition, and others have recently emerged with promising results. However, many areas of controversy remain, and further studies and global collaboration are needed to obtain prospective and randomized data, in order to develop an appropriate shared stepwise approach.

Cite this article: Bone Joint J 2023;105-B(7):729–734.


Aims

Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications.

Methods

In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 3 - 10
1 May 2024
Heimann AF Murmann V Schwab JM Tannast M

Aims

The aim of this study was to investigate whether anterior pelvic plane-pelvic tilt (APP-PT) is associated with distinct hip pathomorphologies. We asked: is there a difference in APP-PT between young symptomatic patients being evaluated for joint preservation surgery and an asymptomatic control group? Does APP-PT vary among distinct acetabular and femoral pathomorphologies? And does APP-PT differ in symptomatic hips based on demographic factors?

Methods

This was an institutional review board-approved, single-centre, retrospective, case-control, comparative study, which included 388 symptomatic hips in 357 patients who presented to our tertiary centre for joint preservation between January 2011 and December 2015. Their mean age was 26 years (SD 2; 23 to 29) and 50% were female. They were allocated to 12 different morphological subgroups. The study group was compared with a control group of 20 asymptomatic hips in 20 patients. APP-PT was assessed in all patients based on supine anteroposterior pelvic radiographs using validated HipRecon software. Values in the two groups were compared using an independent-samples t-test. Multiple regression analysis was performed to examine the influences of diagnoses and demographic factors on APP-PT. The minimal clinically important difference (MCID) for APP-PT was defined as > 1 SD.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims

The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods

In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.


Bone & Joint Open
Vol. 4, Issue 2 | Pages 53 - 61
1 Feb 2023
Faraj S de Windt TS van Hooff ML van Hellemondt GG Spruit M

Aims

The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA).

Methods

Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 423 - 432
6 Jul 2023
Xie H Wang N He H Yang Z Wu J Yang T Wang Y

Aims

Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture).

Methods

PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and BMD, OP, or fracture were included. Effect sizes included regression coefficient (β), weighted mean difference (WMD), and odds ratio (OR). According to heterogeneity, the fixed-effect or random-effect model was used to assess the association between selenium and bone health.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1041 - 1048
19 Nov 2024
Delgado C Martínez-Rodríguez JM Candura D Valencia M Martínez-Catalán N Calvo E

Aims

The Bankart and Latarjet procedures are two of the most common surgical techniques to treat anterior shoulder instability with satisfactory clinical and functional outcomes. However, the outcomes in the adolescent population remain unclear, and there is no information regarding the arthroscopic Latarjet in this population. The purpose of this study was to evaluate the outcomes of the arthroscopic Bankart and arthroscopic Latarjet procedures in the management of anterior shoulder instability in adolescents.

Methods

We present a retrospective, matched-pair study of teenagers with anterior glenohumeral instability treated with an arthroscopic Bankart repair (ABR) or an arthroscopic Latarjet (AL) procedure with a minimum two-year follow-up. Preoperative demographic and clinical features, factors associated with dislocation, and complications were collected. Recurrence, defined as dislocation or subluxation, was established as the primary outcome. Clinical and functional outcomes were analyzed using objective (Rowe), and subjective (Western Ontario Shoulder Instability Index (WOSI) and Single Assessment Numeric Evaluation (SANE)) scores. Additionally, the rate of return to sport was assessed.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 643 - 651
24 Aug 2023
Langit MB Tay KS Al-Omar HK Barlow G Bates J Chuo CB Muir R Sharma H

Aims

The standard of wide tumour-like resection for chronic osteomyelitis (COM) has been challenged recently by adequate debridement. This paper reviews the evolution of surgical debridement for long bone COM, and presents the outcome of adequate debridement in a tertiary bone infection unit.

Methods

We analyzed the retrospective record review from 2014 to 2020 of patients with long bone COM. All were managed by multidisciplinary infection team (MDT) protocol. Adequate debridement was employed for all cases, and no case of wide resection was included.


Bone & Joint Research
Vol. 14, Issue 1 | Pages 5 - 15
1 Jan 2025
Tanveer M Klein K von Rechenberg B Darwiche S Dailey HL

Aims

The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization.

Methods

MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 758 - 765
12 Sep 2024
Gardner J Roman ER Bhimani R Mashni SJ Whitaker JE Smith LS Swiergosz A Malkani AL

Aims

Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction.

Methods

This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


Bone & Joint Open
Vol. 6, Issue 1 | Pages 82 - 92
14 Jan 2025
Ranieri R Borroni M Delle Rose G Conti M Garofalo R Castagna A

Aims

The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA).

Methods

After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain. Complications and revisions were recorded, and survival analysis was performed.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims

Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation.

Methods

This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).


Bone & Joint Open
Vol. 5, Issue 6 | Pages 489 - 498
12 Jun 2024
Kriechling P Bowley ALW Ross LA Moran M Scott CEH

Aims

The purpose of this study was to compare reoperation and revision rates of double plating (DP), single plating using a lateral locking plate (SP), or distal femoral arthroplasty (DFA) for the treatment of periprosthetic distal femur fractures (PDFFs).

Methods

All patients with PDFF primarily treated with DP, SP, or DFA between 2008 and 2022 at a university teaching hospital were included in this retrospective cohort study. The primary outcome was revision surgery for failure following DP, SP, or DFA. Secondary outcome measures included any reoperation, length of hospital stay, and mortality. All basic demographic and relevant implant and injury details were collected. Radiological analysis included fracture classification and evaluation of metaphyseal and medial comminution.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims

Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown.

Methods

We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims

The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?

Methods

A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 859 - 866
4 Nov 2022
Diesel CV Guimarães MR Menegotto SM Pereira AH Pereira AA Bertolucci LH Freitas EC Galia CR

Aims

Our objective was describing an algorithm to identify and prevent vascular injury in patients with intrapelvic components.

Methods

Patients were defined as at risk to vascular injuries when components or cement migrated 5 mm or more beyond the ilioischial line in any of the pelvic incidences (anteroposterior and Judet view). In those patients, a serial investigation was initiated by a CT angiography, followed by a vascular surgeon evaluation. The investigation proceeded if necessary. The main goal was to assure a safe tissue plane between the hardware and the vessels.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 850 - 858
2 Nov 2022
Khoriati A Fozo ZA Al-Hilfi L Tennent D

Aims

The management of mid-shaft clavicle fractures (MSCFs) has evolved over the last three decades. Controversy exists over which specific fracture patterns to treat and when. This review aims to synthesize the literature in order to formulate an appropriate management algorithm for these injuries in both adolescents and adults.

Methods

This is a systematic review of clinical studies comparing the outcomes of operative and nonoperative treatments for MSCFs in the past 15 years. The literature was searched using, PubMed, Google scholar, OVID Medline, and Embase. All databases were searched with identical search terms: mid-shaft clavicle fractures (± fixation) (± nonoperative).


Bone & Joint Open
Vol. 3, Issue 5 | Pages 359 - 366
1 May 2022
Sadekar V Watts AT Moulder E Souroullas P Hadland Y Barron E Muir R Sharma HK

Aims

The timing of when to remove a circular frame is crucial; early removal results in refracture or deformity, while late removal increases the patient morbidity and delay in return to work. This study was designed to assess the effectiveness of a staged reloading protocol. We report the incidence of mechanical failure following both single-stage and two stage reloading protocols and analyze the associated risk factors.

Methods

We identified consecutive patients from our departmental database. Both trauma and elective cases were included, of all ages, frame types, and pathologies who underwent circular frame treatment. Our protocol is either a single-stage or two-stage process implemented by defunctioning the frame, in order to progressively increase the weightbearing load through the bone, and promote full loading prior to frame removal. Before progression, through the process we monitor patients for any increase in pain and assess radiographs for deformity or refracture.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims

Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 815 - 825
20 Oct 2022
Athanatos L Kulkarni K Tunnicliffe H Samaras M Singh HP Armstrong AL

Aims

There remains a lack of consensus regarding the management of chronic anterior sternoclavicular joint (SCJ) instability. This study aimed to assess whether a standardized treatment algorithm (incorporating physiotherapy and surgery and based on the presence of trauma) could successfully guide management and reduce the number needing surgery.

Methods

Patients with chronic anterior SCJ instability managed between April 2007 and April 2019 with a standardized treatment algorithm were divided into non-traumatic (offered physiotherapy) and traumatic (offered surgery) groups and evaluated at discharge. Subsequently, midterm outcomes were assessed via a postal questionnaire with a subjective SCJ stability score, Oxford Shoulder Instability Score (OSIS, adapted for the SCJ), and pain visual analogue scale (VAS), with analysis on an intention-to-treat basis.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Open
Vol. 3, Issue 9 | Pages 666 - 673
1 Sep 2022
Blümel S Leunig M Manner H Tannast M Stetzelberger VM Ganz R

Aims

Avascular femoral head necrosis in the context of gymnastics is a rare but serious complication, appearing similar to Perthes’ disease but occurring later during adolescence. Based on 3D CT animations, we propose repetitive impact between the main supplying vessels on the posterolateral femoral neck and the posterior acetabular wall in hyperextension and external rotation as a possible cause of direct vascular damage, and subsequent femoral head necrosis in three adolescent female gymnasts we are reporting on.

Methods

Outcome of hip-preserving head reduction osteotomy combined with periacetabular osteotomy was good in one and moderate in the other up to three years after surgery; based on the pronounced hip destruction, the third received initially a total hip arthroplasty.


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims

Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error.

Methods

A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Δsacral slope(SS)stand-sit > 30°), or stiff (SSstand-sit < 10°) spinopelvic mobility contributed to increased error rates.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims

We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan.

Methods

We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.


Bone & Joint Open
Vol. 3, Issue 9 | Pages 674 - 683
1 Sep 2022
Singh P Jami M Geller J Granger C Geaney L Aiyer A

Aims

Due to the recent rapid expansion of scooter sharing companies, there has been a dramatic increase in the number of electric scooter (e-scooter) injuries. Our purpose was to conduct a systematic review to characterize the demographic characteristics, most common injuries, and management of patients injured from electric scooters.

Methods

We searched PubMed, EMBASE, Scopus, and Web of Science databases using variations of the term “electric scooter”. We excluded studies conducted prior to 2015, studies with a population of less than 50, case reports, and studies not focused on electric scooters. Data were analyzed using t-tests and p-values < 0.05 were considered significant.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 775 - 780
1 Jul 2022
Kołodziejczyk K Czubak-Wrzosek M Kwiatkowska M Czubak J

Aims

Developmental dysplasia of the hip (DDH) describes a pathological relationship between the femoral head and acetabulum. Periacetabular osteotomy (PAO) may be used to treat this condition. The aim of this study was to evaluate the results of PAO in adolescents and adults with persistent DDH.

Methods

Patients were divided into four groups: A, adolescents who had not undergone surgery for DDH in childhood (25 hips); B, adolescents who had undergone surgery for DDH in childhood (20 hips); C, adults with DDH who had not undergone previous surgery (80 hips); and D, a control group of patients with healthy hips (70 hips). The radiological evaluation of digital anteroposterior views of hips included the Wiberg angle (centre-edge angle (CEA)), femoral head cover (FHC), medialization, distalization, and the ilioischial angle. Clinical assessment involved the Harris Hip Score (HHS) and gluteal muscle performance assessment.


Bone & Joint Open
Vol. 3, Issue 3 | Pages 261 - 267
22 Mar 2022
Abe S Kashii M Shimada T Suzuki K Nishimoto S Nakagawa R Horiki M Yasui Y Namba J Kuriyama K

Aims

Low-energy distal radius fractures (DRFs) are the most common upper arm fractures correlated with bone fragility. Vitamin D deficiency is an important risk factor associated with DRFs. However, the relationship between DRF severity and vitamin D deficiency is not elucidated. Therefore, this study aimed to identify the correlation between DRF severity and serum 25-hydroxyvitamin-D level, which is an indicator of vitamin D deficiency.

Methods

This multicentre retrospective observational study enrolled 122 female patients aged over 45 years with DRFs with extension deformity. DRF severity was assessed by three independent examiners using 3D CT. Moreover, it was categorized based on the AO classification, and the degree of articular and volar cortex comminution was evaluated. Articular comminution was defined as an articular fragment involving three or more fragments, and volar cortex comminution as a fracture in the volar cortex of the distal fragment. Serum 25-hydroxyvitamin-D level, bone metabolic markers, and bone mineral density (BMD) at the lumbar spine, hip, and wrist were evaluated six months after injury. According to DRF severity, serum 25-hydroxyvitamin-D level, parameters correlated with bone metabolism, and BMD was compared.