Advertisement for orthosearch.org.uk
Results 1 - 20 of 147
Results per page:
Bone & Joint Research
Vol. 7, Issue 12 | Pages 629 - 635
1 Dec 2018
Hung L Chao C Huang J Lin J

Objectives. Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates. Methods. Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently. Results. For stainless steel, type II and type III plates had significantly higher fatigue strength than type I plates. For titanium, there were no significant differences between the fatigue strengths of the three types of plates. Failure analyses showed local plastic deformations at the threads of screw plugs in type II and type III stainless steel plates but not in titanium plates. Conclusion. The screw plugs could increase the fatigue strength of stainless steel plates but not of titanium plates. Therefore, leaving screw holes open around fracture sites is recommended in titanium plates. Cite this article: L-W. Hung, C-K. Chao, J-R. Huang, J. Lin. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629–635. DOI: 10.1302/2046-3758.712.BJR-2018-0083.R1


Bone & Joint Open
Vol. 3, Issue 8 | Pages 648 - 655
1 Aug 2022
Yeung CM Bhashyam AR Groot OQ Merchan N Newman ET Raskin KA Lozano-Calderón SA

Aims. Due to their radiolucency and favourable mechanical properties, carbon fibre nails may be a preferable alternative to titanium nails for oncology patients. We aim to compare the surgical characteristics and short-term results of patients who underwent intramedullary fixation with either a titanium or carbon fibre nail for pathological long-bone fracture. Methods. This single tertiary-institutional, retrospectively matched case-control study included 72 patients who underwent prophylactic or therapeutic fixation for pathological fracture of the humerus, femur, or tibia with either a titanium (control group, n = 36) or carbon fibre (case group, n = 36) intramedullary nail between 2016 to 2020. Patients were excluded if intramedullary fixation was combined with any other surgical procedure/fixation method. Outcomes included operating time, blood loss, fluoroscopic time, and complications. Fisher’s exact test and Mann-Whitney U test were used for categorical and continuous outcomes, respectively. Results. Patients receiving carbon nails as compared to those receiving titanium nails had higher blood loss (median 150 ml (interquartile range (IQR) 100 to 250) vs 100 ml (IQR 50 to 150); p = 0.042) and longer fluoroscopic time (median 150 seconds (IQR 114 to 182) vs 94 seconds (IQR 58 to 124); p = 0.001). Implant complications occurred in seven patients (19%) in the titanium group versus one patient (3%) in the carbon fibre group (p = 0.055). There were no notable differences between groups with regard to operating time, surgical wound infection, or survival. Conclusion. This pilot study demonstrates a non-inferior surgical and short-term clinical profile supporting further consideration of carbon fibre nails for pathological fracture fixation in orthopaedic oncology patients. Given enhanced accommodation of imaging methods important for oncological surveillance and radiation therapy planning, as well as high tolerances to fatigue stress, carbon fibre implants possess important oncological advantages over titanium implants that merit further prospective investigation. Level of evidence: III, Retrospective study. Cite this article: Bone Jt Open 2022;3(8):648–655


Aims. This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. Methods. In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation. Results. Micro-CT and histological evaluation showed that the bone microscopic parameters of femoral metaphysis trabecular bone and bone tissue around the titanium rod in the OVX + MD group demonstrated higher bone mineral density, bone volume fraction, trabecular number, connective density, trabecular thickness, and lower trabecular speculation (p = 0.004) than the OVX + MN group. Moreover, the biomechanical parameters of the OVX + MD group showed higher pull-out test and three-point bending test values, including fixation strength, interface stiffness, energy to failure, energy at break, ultimate load, and elastic modulus (p = 0.012) than the OVX + MN group. In addition, the bone metabolism index and oxidative stress indicators of the OVX + MD group show lower values of Type I collagen cross-linked C-telopeptide, procollagen type 1 N propeptide, and malondialdehyde (p = 0.013), and higher values of TAC and SOD (p = 0.002) compared with the OVX + MN group. Conclusion. The results of our study suggest that systemic administration with melatonin at 9 am may improve the initial osseointegration of titanium rods under osteoporotic conditions more effectively than administration at 9 pm. Cite this article: Bone Joint Res 2022;11(11):751–762


Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Methods. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 10. 3. or 1 × 10. 6. colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 10. 3. or 1 × 10. 6. CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash. Results. The first part of the study showed that low-grade infection was more significant in 400 µm cylinders than cylinders with larger pore sizes (p < 0.05). The second part of the study showed that saline wash alone was ineffective in eradicating both low- and high-grade infections. Saline plus PVA-VAN/TOB-P eradicated the titanium cylinder-associated infections, as manifested by negative cultures of the washouts and supported by scanning electron microscopy and histology. Conclusion. Porous titanium cylinders were vulnerable to bacterial infection and biofilm formation that could not be treated by saline irrigation alone. Application of PVA-VAN/TOB-P directly into the surgical site alone or after saline wash represents a feasible approach for prevention and/or treatment of porous implant-related infections. Cite this article: Bone Joint Res 2024;13(11):622–631


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


Bone & Joint Open
Vol. 4, Issue 7 | Pages 472 - 477
1 Jul 2023
Xiang W Tarity TD Gkiatas I Lee H Boettner F Rodriguez JA Wright TM Sculco PK

Aims. When performing revision total hip arthroplasty using diaphyseal-engaging titanium tapered stems (TTS), the recommended 3 to 4 cm of stem-cortical diaphyseal contact may not be available. In challenging cases such as these with only 2 cm of contact, can sufficient axial stability be achieved and what is the benefit of a prophylactic cable? This study sought to determine, first, whether a prophylactic cable allows for sufficient axial stability when the contact length is 2 cm, and second, if differing TTS taper angles (2° vs 3.5°) impact these results. Methods. A biomechanical matched-pair cadaveric study was designed using six matched pairs of human fresh cadaveric femora prepared so that 2 cm of diaphyseal bone engaged with 2° (right femora) or 3.5° (left femora) TTS. Before impaction, three matched pairs received a single 100 lb-tensioned prophylactic beaded cable; the remaining three matched pairs received no cable adjuncts. Specimens underwent stepwise axial loading to 2600 N or until failure, defined as stem subsidence > 5 mm. Results. All specimens without cable adjuncts (6/6 femora) failed during axial testing, while all specimens with a prophylactic cable (6/6) successfully resisted axial load, regardless of taper angle. In total, four of the failed specimens experienced proximal longitudinal fractures, three of which occurred with the higher 3.5° TTS. One fracture occurred in a 3.5° TTS with a prophylactic cable yet passed axial testing, subsiding < 5 mm. Among specimens with a prophylactic cable, the 3.5° TTS resulted in lower mean subsidence (0.5 mm (SD 0.8)) compared with the 2° TTS (2.4 mm (SD 1.8)). Conclusion. A single prophylactic beaded cable dramatically improved initial axial stability when stem-cortex contact length was 2 cm. All implants failed secondary to fracture or subsidence > 5 mm when a prophylactic cable was not used. A higher taper angle appears to decrease the magnitude of subsidence but increased the fracture risk. The fracture risk was mitigated by the use of a prophylactic cable. Cite this article: Bone Jt Open 2023;4(7):472–477


Bone & Joint Research
Vol. 1, Issue 6 | Pages 125 - 130
1 Jun 2012
Bøe BG Støen RØ Solberg LB Reinholt FP Ellingsen JE Nordsletten L

Objectives. An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. Methods. A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. Results. Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. Conclusion. Porous titanium coating is to some degree osteoinductive in muscles


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results. DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion. DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424


Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar antimicrobial properties. Cite this article: T. Itabashi, K. Narita, A. Ono, K. Wada, T. Tanaka, G. Kumagai, R. Yamauchi, A. Nakane, Y. Ishibashi. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017;6:108–112. DOI: 10.1302/2046-3758.62.2000619


Bone & Joint Research
Vol. 2, Issue 8 | Pages 140 - 148
1 Aug 2013
Gauthier L Dinh L Beaulé PE

Objectives. To quantify and compare peri-acetabular bone mineral density (BMD) between a monoblock acetabular component using a metal-on-metal (MoM) bearing and a modular titanium shell with a polyethylene (PE) insert. The secondary outcome was to measure patient-reported clinical function. Methods. A total of 50 patients (25 per group) were randomised to MoM or metal-on-polyethlene (MoP). There were 27 women (11 MoM) and 23 men (14 MoM) with a mean age of 61.6 years (47.7 to 73.2). Measurements of peri-prosthetic acetabular and contralateral hip (covariate) BMD were performed at baseline and at one and two years’ follow-up. The Western Ontario and McMaster Universities osteoarthritis index (WOMAC), University of California, Los Angeles (UCLA) activity score, Harris hip score, and RAND-36 were also completed at these intervals. Results. At two years, only zone 1 showed a loss in BMD (-2.5%) in MoM group compared with a gain in the MoP group (+2.2%). Zone 2 showed loss in both groups (-2.2% for MoM; -3.9% for MoP) and zones 3 and 4 a gain in both groups (+0.1% for MoM; +3.3% for MoP). No other between-group differences were detected. When adjusting for BMD of the contralateral hip, no differences in BMD were observed. The only significant differences in functional scores at two years were higher UCLA activity (7.3 (. sd. 1.2) vs 6.1 (. sd. 1.5); p = 0.01) and RAND-36 physical function (82.1 (. sd. 13.0) vs 64.5 (. sd. 26.4); p = 0.02) for MoM bearings versus MoP. One revision was performed in the MoM group, for aseptic acetabular loosening at 11 months. Conclusions. When controlling for systemic BMD, there were no significant differences between MoM and MoP groups in peri-acetabular BMD. However, increasing reports of adverse tissue reactions with large head MoM THR have restricted the use of the monoblock acetabular component to resurfacing only


Bone & Joint Open
Vol. 4, Issue 2 | Pages 79 - 86
10 Feb 2023
McLaughlin JR Johnson MA Lee KR

Aims

The purpose of this study is to report our updated results at a minimum follow-up of 30 years using a first generation uncemented tapered femoral component in primary total hip arthroplasty (THA).

Methods

The original cohort consisted of 145 consecutive THAs performed by a single surgeon in 138 patients. A total of 37 patients (40 hips) survived a minimum of 30 years, and are the focus of this review. The femoral component used in all cases was a first-generation Taperloc with a non-modular 28 mm femoral head. Clinical follow-up at a minimum of 30 years was obtained on every living patient. Radiological follow-up at 30 years was obtained on all but four.


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment of the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2 MPa to 3.3 MPa compared with 1.3 MPa to 2.7 MPa for the native tibia. The conventional solid UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and caused > 70% of bone surface area to be underloaded compared to the native tibia. Conclusion. Titanium lattice implants maintained the natural mechanical loading in the proximal tibia after UKA and TKA, but conventional solid implants did not. This is an exciting first step towards implants that maintain bone health, but such implants also have to meet fatigue and micromotion criteria to be clinically viable. Cite this article: Bone Joint Res 2022;11(2):91–101


Bone & Joint Open
Vol. 4, Issue 8 | Pages 551 - 558
1 Aug 2023
Thomas J Shichman I Ohanisian L Stoops TK Lawrence KW Ashkenazi I Watson DT Schwarzkopf R

Aims. United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and osseointegration following treatment of THA UCS B2 and B3 periprosthetic fractures. Methods. A retrospective review was conducted of all patients who underwent revision THA (rTHA) for periprosthetic UCS B2 and B3 periprosthetic fracture who received a single design monoblock fluted tapered titanium stem at two large, tertiary care, academic hospitals. A total of 72 patients met inclusion and exclusion criteria (68 UCS B2, and four UCS B3 fractures). Primary outcomes of interest were radiological stem subsidence (> 5 mm), radiological osseointegration, and fracture union. Sub-analysis was also done for 46 patients with minimum one-year follow-up. Results. For the total cohort, stem osseointegration, fracture union, and stem subsidence were 98.6%, 98.6%, and 6.9%, respectively, at latest follow-up (mean follow-up 27.0 months (SD 22.4)). For patients with minimum one-year of follow-up, stem osseointegration, fracture union, and stem subsidence were 97.8%, 97.8%, and 6.5%, respectively. Conclusion. Monoblock fluted stems can be an acceptable modality for the management of UCS B2 periprosthetic fractures in rTHAs due to high rates of stem osseointegration and survival, and the low rates of stem subsidence, and revision. Further research on the use of this stem for UCS B3 periprosthetic fractures is warranted to determine if the same conclusion can be made for this fracture pattern. Cite this article: Bone Jt Open 2023;4(8):551–558


Bone & Joint Research
Vol. 13, Issue 4 | Pages 149 - 156
4 Apr 2024
Rajamäki A Lehtovirta L Niemeläinen M Reito A Parkkinen J Peräniemi S Vepsäläinen J Eskelinen A

Aims. Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium. Methods. Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia. Results. Median metal concentrations were as follows: cobalt: 0.69 μg/g (interquartile range (IQR) 0.10 to 6.10); chromium: 1.1 μg/g (IQR 0.27 to 4.10); and titanium: 1.6 μg/g (IQR 0.90 to 4.07). Moderate ALVAL scores were found in 30% (n = 39) of the revised knees. There were ten patients with an ALVAL score of 6 or more who were revised for suspected periprosthetic joint infection (PJI), aseptic loosening, or osteolysis. R2 varied between 0.269 and 0.369 for the ordinal regression models. The most important variables were model type, indication for revision, and cobalt and chromium in the ordinal regression models. Conclusion. We found that metal particles released from the knee prosthesis can accumulate in the periprosthetic tissues. Several patients revised for suspected culture-negative PJI had features of an ALVAL reaction, which is a novel finding. Therefore, ALVAL-type reactions can also be found around knee prostheses, but they are mostly mild and less common than those found around metal-on-metal prostheses. Cite this article: Bone Joint Res 2024;13(4):149–156


Bone & Joint Open
Vol. 5, Issue 10 | Pages 825 - 831
3 Oct 2024
Afghanyar Y Afghanyar B Loweg L Drees P Gercek E Dargel J Rehbein P Kutzner KP

Aims. Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up. Methods. This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up. Results. Clinical assessment showed persistent major improvement in all scores. On radiological assessment, only one case showed a lucent line (without symptoms). At last follow-up, wear and migration were below the critical thresholds. No cup-related revisions were needed, indicating an outstanding survival rate of 100%. Conclusion. Isoelastic VEPE cups offer high success rates and may prevent osteolysis, aseptic loosening, and the need for revision surgeries in the long term. However, longer follow-up is needed to validate our findings and confirm the advantages offered by this cup. Cite this article: Bone Jt Open 2024;5(10):825–831


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims. To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life. Methods. Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength. Results. The B plates had fatigue lives 11- to 16-times higher than those of the A plates. Before cyclic loading, the screw removal torques were all higher than the insertion torques. However, after cyclic loading, the removal torques were similar to or slightly lower than the insertion torques (0% to 17.3%), although those of the B plates were higher than those of the A plates for all except the type III plates (101%, 109.8%, and 93.8% for types I, II, and III, respectively). The bending strengths of the screws were not significantly different between the A and B plates for any of the types. Conclusion. Removing half of the threads from the screw holes markedly increased the fatigue life of the locking plates while preserving the tightness of the screw heads and the bending strength of the locking screws. However, future work is necessary to determine the relationship between the notch sensitivity properties and titanium plate design. Cite this article: Bone Joint Res 2020;9(10):645–652


Bone & Joint Open
Vol. 2, Issue 1 | Pages 33 - 39
14 Jan 2021
McLaughlin JR Lee KR Johnson MA

Aims. We present the clinical and radiological results at a minimum follow-up of 20 years using a second-generation uncemented total hip arthroplasty (THA). These results are compared to our previously published results using a first-generation hip arthroplasty followed for 20 years. Methods. A total of 62 uncemented THAs in 60 patients were performed between 1993 and 1994. The titanium femoral component used in all cases was a Taperloc with a reduced distal stem. The acetabular component was a fully porous coated threaded hemispheric titanium shell (T-Tap ST). The outcome of every femoral and acetabular component with regard to retention or revision was determined for all 62 THAs. Complete clinical follow-up at a minimum of 20 years was obtained on every living patient. Radiological follow-up was obtained on all but one. Results. Two femoral components (3.2%) required revision. One stem was revised secondary to a periprosthetic fracture one year postoperatively and one was revised for late sepsis. No femoral component was revised for aseptic loosening. Six acetabular components had required revision, five for aseptic loosening. One additional acetabular component was revised for sepsis. Radiologically, all femoral components remained well fixed. One acetabular was judged loose by radiological criteria. The mean Harris Hip Score improved from 46 points (30 to 67) preoperatively to 89 points (78 to 100) at final follow-up. With revision for aseptic loosening as the endpoint, survival of the acetabular component was 95% (95% confidence interval (CI) 90 to 98) at 25 years. Femoral component survival was 100%. Conclusion. The most significant finding of this report was the low prevalence of aseptic loosening and revision of the femoral component at a mean follow-up of 22 years. A second important finding was the survival of over 90% of the hemispheric threaded ring acetabular components. While these shells remain controversial, in this series they performed well. Cite this article: Bone Jt Open 2021;2(1):33–39


Bone & Joint Open
Vol. 2, Issue 10 | Pages 785 - 795
1 Oct 2021
Matar HE Porter PJ Porter ML

Aims. Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA). Methods. Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence. Results. We included 38 heterogeneous studies (two randomized controlled trials, six comparative studies, 19 case series, and 11 case reports). The evidence indicates that metal hypersensitivity is a rare complication with some histopathological features leading to pain and dissatisfaction with no reliable screening tests preoperatively. Hypoallergenic implants are viable alternatives for patients with self-reported/confirmed metal hypersensitivity if declared preoperatively; however, concerns remain over their long-term outcomes with ceramic implants outperforming titanium nitride-coated implants and informed consent is paramount. For patients presenting with painful TKA, metal hypersensitivity is a diagnosis of exclusion where patch skin testing, lymphocyte transformation test, and synovial biopsies are useful adjuncts before revision surgery is undertaken to hypoallergenic implants with shared decision-making and informed consent. Conclusion. Using the limited available evidence in the literature, we provide a practical approach to metal hypersensitivity in TKA patients. Future national/registry-based studies are needed to identify the scale of metal hypersensitivity, agreed diagnostic criteria, and management strategies. Cite this article: Bone Jt Open 2021;2(10):785–795


Bone & Joint Research
Vol. 11, Issue 5 | Pages 260 - 269
3 May 2022
Staats K Sosa BR Kuyl E Niu Y Suhardi V Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MPG Yang X

Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion. iPTH treatment mediated successful osseointegration and increased bone mechanical strength, despite initial implant instability. Clinically, this suggests that initially unstable implants may be osseointegrated with iPTH treatment. Cite this article: Bone Joint Res 2022;11(5):260–269