Advertisement for orthosearch.org.uk
Results 1 - 20 of 302
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims. The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro. Results. The expression of all fibrosis-related genes was higher in Db met(-) than in WT met(-) and was suppressed by metformin. Increased levels of fibrosis-related genes, posterior capsule thickness, and collagen density were observed in the capsules of db/db mice compared with those in WT mice; these effects were suppressed by metformin. Glucose addition increased fibrosis-related gene expression in both groups of mice in vitro. When glucose was added, metformin inhibited the expression of fibrosis-related genes other than cellular communication network factor 2 (Ccn2) in WT mouse cells. Conclusion. Hyperglycaemia promotes fibrosis in the mouse knee joint capsule, which is inhibited by metformin. These findings can help inform the development of novel strategies for treating knee joint capsule fibrosis. Cite this article: Bone Joint Res 2024;13(7):321–331


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. Methods. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction. Results. The laxity results show that both implants are capable of mimicking the native internal/external-laxity during the controlled lowering phase. The kinematic results show that the bi-cruciate retaining implant tends to approximate the native condition better compared to bi-cruciate stabilized implant. This is valid for the internal/external rotation and the anteroposterior translation during all phases of the stair descent, and for the compression-distraction of the knee joint during swing and controlled lowering phase. Conclusion. The results show a better approximation of the native kinematics by the bi-cruciate retaining knee implant compared to the bi-cruciate stabilized knee implant for internal/external rotation and anteroposterior translation. Whether this will result in better patient outcomes remains to be investigated. Cite this article: Bone Joint Res 2023;12(4):285–293


Bone & Joint Open
Vol. 5, Issue 9 | Pages 785 - 792
19 Sep 2024
Clement RGE Wong SJ Hall A Howie SEM Simpson AHRW

Aims. The aims of this study were to: 1) report on a cohort of skeletally mature patients with native hip and knee septic arthritis over a 14-year period; 2) to determine the rate of joint failure in patients who had experienced an episode of hip or knee septic arthritis; and 3) to assess the outcome following septic arthritis relative to the infecting organism, whether those patients infected by Staphylococcus aureus would be more likely to have adverse outcomes than those infected by other organisms. Methods. All microbiological samples from joint aspirations between March 2000 and December 2014 at our institution were reviewed in order to identify cases of culture-proven septic arthritis. Cases in children (aged < 16 years) and prosthetic joints were excluded. Data were abstracted on age at diagnosis, sex, joint affected (hip or knee), type of organisms isolated, cause of septic arthritis, comorbidities within the Charlson Comorbidity Index (CCI), details of treatment, and outcome. Results. A total of 142 patients were confirmed to have had an episode of septic arthritis in a native hip (n = 17) or knee joint (n = 125). S. aureus accounted for 57.7% of all hip and knee joint infections. There were 13 inpatient deaths attributed to septic arthritis. The median age of the patients who died was 77.5 (46.9 to 92.2) and their median age-adjusted CCI was 8 (6 to 12). A failure of the joint occurred in 26 knees (21%) and nine hips (53%). Of the knee joints infected by S. aureus (n = 71), 23 knees (32%) went into failure of joint, whereas of those infected by other organisms (n = 54), only three knees (6%) failed. Conclusion. Based on our study findings, hip and knee septic arthritis long-term outcomes were substantially worse than their immediate outcome suggested. Failure of knee joint is 6.1 times more likely to occur in those infected with S. aureus. Cite this article: Bone Jt Open 2024;5(9):785–792


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims. Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods. In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results. DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion. We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment. Cite this article: Bone Joint Res 2023;12(4):259–273


Bone & Joint Research
Vol. 8, Issue 11 | Pages 509 - 517
1 Nov 2019
Kang K Koh Y Park K Choi C Jung M Shin J Kim S

Objectives. The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods. Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results. Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion. The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions. Cite this article: Bone Joint Res 2019;8:509–517


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims

Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA.

Methods

First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 353 - 361
10 Jul 2024
Gardete-Hartmann S Mitterer JA Sebastian S Frank BJH Simon S Huber S Löw M Sommer I Prinz M Halabi M Hofstaetter JG

Aims. This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool. Methods. Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures. Results. The JI panel detected microorganisms in 7/48 (14.5%) and 15/67 (22.4%) cases related to UNCs and SPCs, respectively, but not in cases of UPCs. The correlation between JI panel detection and infection classification criteria for early/late acute and chronic PJI was 46.6%, 73%, and 40%, respectively. Overall, the JI panel identified 12.6% additional microorganisms and three new species. The JI panel pathogen identification showed a sensitivity and specificity of 41.4% (95% confidence interval (CI) 33.7 to 49.5) and 91.1% (95% CI 84.7 to 94.9), respectively. In total, 19/195 (9.7%) could have been managed differently and more accurately upon JI panel evaluation. Conclusion. Despite its microbial limitation, JI panel demonstrated clinical usefulness by complementing the traditional methods based on multiple cultures, particularly in PJI with unclear microbiological results. Cite this article: Bone Joint Res 2024;13(7):353–361


Bone & Joint Open
Vol. 2, Issue 8 | Pages 576 - 582
2 Aug 2021
Fuchs M Kirchhoff F Reichel H Perka C Faschingbauer M Gwinner C

Aims. Current guidelines consider analyses of joint aspirates, including leucocyte cell count (LC) and polymorphonuclear percentage (PMN%) as a diagnostic mainstay of periprosthetic joint infection (PJI). It is unclear if these parameters are subject to a certain degree of variability over time. Therefore, the aim of this study was to evaluate the variation of LC and PMN% in patients with aseptic revision total knee arthroplasty (TKA). Methods. We conducted a prospective, double-centre study of 40 patients with 40 knee joints. Patients underwent joint aspiration at two different time points with a maximum period of 120 days in between these interventions and without any events such as other joint aspirations or surgeries. The main indications for TKA revision surgery were aseptic implant loosening (n = 24) and joint instability (n = 11). Results. Overall, 80 synovial fluid samples of 40 patients were analyzed. The average time period between the joint aspirations was 50 days (SD 32). There was a significantly higher percentage change in LC when compared to PMN% (44.1% (SD 28.6%) vs 27.3% (SD 23.7%); p = 0.003). When applying standard definition criteria, LC counts were found to skip back and forth between the two time points with exceeding the thresholds in up to 20% of cases, which was significantly more compared to PMN% for the European Bone and Joint Infection Society (EBJIS) criteria (p = 0.001), as well as for Musculoskeletal Infection Society (MSIS) (p = 0.029). Conclusion. LC and PMN% are subject to considerable variation. According to its higher interindividual variance, LC evaluation might contribute to false-positive or false-negative results in PJI assessment. Single LC testing prior to TKA revision surgery seems to be insufficient to exclude PJI. On the basis of the obtained results, PMN% analyses overrule LC measurements with regard to a conclusive diagnostic algorithm. Cite this article: Bone Jt Open 2021;2(8):566–572


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives. Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results. Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions. These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


Bone & Joint Open
Vol. 5, Issue 9 | Pages 806 - 808
27 Sep 2024
Altorfer FCS Lebl DR


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives. Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis. Materials and Methods. A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis. Results. Animals that underwent arthrotomy had equivalent joint contractures regardless of scaffold implantation (-13.9° versus -10.9°, equivalence limit 15°). Animals that underwent surgery to induce contracture did not demonstrate equivalent joint contractures with (41.8°) or without (53.9°) collagen scaffold implantation. Chondral damage occurred in similar rates with (11 of 48) and without (nine of 48) scaffold implantation. No significant difference in synovitis was noted between groups. Absorption of the collagen scaffold occurred within eight weeks in all animals. Conclusion. Our data suggest that intra-articular implantation of a collagen sponge does not induce synovitis or cartilage damage. Implantation in a native joint does not seem to induce contracture. Implantation of the collagen sponge in a rabbit knee model of contracture may decrease the severity of the contracture. Cite this article: J. A. Walker, T. J. Ewald, E. Lewallen, A. Van Wijnen, A. D. Hanssen, B. F. Morrey, M. E. Morrey, M. P. Abdel, J. Sanchez-Sotelo. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2016;6:162–171. DOI: 10.1302/2046-3758.63.BJR-2016-0193


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims

Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA.

Methods

For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 509 - 514
12 Jul 2021
Biddle M Kennedy IW Wright PM Ritchie ND Meek RMD Rooney BP

Aims

Periprosthetic hip and knee infection remains one of the most severe complications following arthroplasty, with an incidence between 0.5% to 1%. This study compares the outcomes of revision surgery for periprosthetic joint infection (PJI) following hip and knee arthroplasty prior to and after implementation of a specialist PJI multidisciplinary team (MDT).

Methods

Data was retrospectively analyzed from a single centre. In all, 29 consecutive joints prior to the implementation of an infection MDT in November 2016 were compared with 29 consecutive joints subsequent to the MDT conception. All individuals who underwent a debridement antibiotics and implant retention (DAIR) procedure, a one-stage revision, or a two-stage revision for an acute or chronic PJI in this time period were included. The definition of successfully treated PJI was based on the Delphi international multidisciplinary consensus.


Objectives. The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Methods. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored. Results. The CBA group showed similar results to the autologous group in biomechanical properties, Moran’s criteria, histological tests and Wakitani histological scoring. Conclusions. These results suggest that tissue-engineered cartilage constructed using the CBA technique could be used effectively to repair cartilage defects in the weight-bearing area of joints. Cite this article: H. Lin, J. Zhou, L. Cao, H. R. Wang, J. Dong, Z. R. Chen. Tissue-engineered cartilage constructed by a biotin-conjugated anti-CD44 avidin binding technique for the repairing of cartilage defects in the weight-bearing area of knee joints in pigs. Bone Joint Res 2017;6:–295. DOI: 10.1302/2046-3758.65.BJR-2016-0277


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims

The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery.

Methods

An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives

We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting.

Methods

A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency.


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives

The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility.

Methods

The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims. To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI). Methods. A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001). Results. Infection was eradicated in 45 patients overall (90%). The PG had a better knee range of motion (ROM) and Knee Society Score (KSS) after the first-stage revision (p = 0.004; p = 0.002), while both groups had similar ROMs and KSSs at the last follow-up (p = 0.136; p = 0.895). The KSS in the CG was significantly better at the last follow-up (p = 0.013), while a larger percentage (10 in 17, 58.82%) of patients in the PG chose to retain the spacer (p = 0.008). Conclusion. Prosthetic spacers and cement spacers are both effective at treating chronic kPJI because they encourage infection control, and the former improved knee function status between stages. For some patients, prosthetic spacers may not require reimplantation. Cite this article: Bone Joint Res 2024;13(6):306–314


Bone & Joint Open
Vol. 2, Issue 10 | Pages 806 - 812
1 Oct 2021
Gerritsen M Khawar A Scheper H van der Wal R Schoones J de Boer M Nelissen R Pijls B

Aims. The aim of this meta-analysis is to assess the association between exchange of modular parts in debridement, antibiotics, and implant retention (DAIR) procedure and outcomes for hip and knee periprosthetic joint infection (PJI). Methods. We conducted a systematic search on PubMed, Embase, Web of Science, and Cochrane library from inception until May 2021. Random effects meta-analyses and meta-regression was used to estimate, on a study level, the success rate of DAIR related to component exchange. Risk of bias was appraised using the (AQUILA) checklist. Results. We included 65 studies comprising 6,630 patients. The pooled overall success after DAIR for PJI was 67% (95% confidence interval (CI) 63% to 70%). This was 70% (95% CI 65% to 75%) for DAIR for hip PJI and 63% (95% CI 58% to 69%) for knee PJI. In studies before 2004 (n = 27), our meta-regression analysis showed a 3.5% increase in success rates for each 10% increase in component exchange in DAIR for hip PJI and a 3.1% increase for each 10% increase in component exchange for knee PJI. When restricted to studies after 2004 (n = 37), this association changed: for DAIR for hip PJI a decrease in successful outcome by 0.5% for each 10% increase in component exchange and for DAIR for knee PJI this was a 0.01% increase in successful outcome for each 10% increase in component exchange. Conclusion. This systematic review and meta-regression found no benefit of modular component exchange on reduction of PJI failure. This limited effect should be weighed against the risks for the patient and cost on a case-by-case basis. The association between exchange of modular components and outcome changed before and after 2004. This suggests the effect seen after 2004 may reflect a more rigorous, evidence-based, approach to the infected implant compared to the years before. Level of Evidence: Level III. Cite this article: Bone Jt Open 2021;2(10):806–812