Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims

Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 203 - 211
1 Jun 2014
Onur T Wu R Metz L Dang A

Objectives. Our objective in this article is to test the hypothesis that type 2 diabetes mellitus (T2DM) is a factor in the onset and progression of osteoarthritis, and to characterise the quality of the articular cartilage in an appropriate rat model. Methods. T2DM rats were obtained from the UC Davis group and compared with control Lewis rats. The diabetic rats were sacrificed at ages from six to 12 months, while control rats were sacrificed at six months only. Osteoarthritis severity was determined via histology in four knee quadrants using the OARSI scoring guide. Immunohistochemical staining was also performed as a secondary form of osteoarthritic analysis. Results. T2DM rats had higher mean osteoarthritis scores than the control rats in each of the four areas that were analysed. However, only the results at the medial and lateral femur and medial tibia were significant. Cysts were also found in T2DM rats at the junction of the articular cartilage and subchondral bone. Immunohistochemical analysis does not show an increase in collagen II between control and T2DM rats. Mass comparisons also showed a significant relationship between mass and osteoarthritis score. Conclusions. T2DM was found to cause global degeneration in the UCD rat knee joints, suggesting that diabetes itself is a factor in the onset and progression of osteoarthritis. The immunohistochemistry stains showed little to no change in collagen II degeneration between T2DM and control rats. Overall, it seems that the animal model used is pertinent to future studies of T2DM in the development and progression of osteoarthritis. Cite this article: Bone Joint Res 2014;3:203–11


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 31 - 42
1 Jan 2017
Kang K Koh Y Jung M Nam J Son J Lee Y Kim S Kim S

Objectives. The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. Methods. A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered. Results. Comparison of predicted passive flexion, posterior drawer kinematics and muscle activation with experimental measurements showed good agreement. Forces of the posterolateral corner structure, and TF and PF contact forces increased with PCL deficiency under gait- and squat-loading conditions. The rate of increase in PF contact force was the greatest during the squat-loading condition. The TF contact forces increased on both medial and lateral compartments during gait-loading conditions. However, during the squat-loading condition, the medial TF contact force tended to increase, while the lateral TF contact forces decreased. The posterolateral corner structure, which showed the greatest increase in force with deficiency of PCL under both gait- and squat-loading conditions, was the popliteus tendon (PT). Conclusion. PCL deficiency is a factor affecting the variability of force on the PT in dynamic-loading conditions, and it could lead to degeneration of the PF joint. Cite this article: K-T. Kang, Y-G. Koh, M. Jung, J-H. Nam, J. Son, Y.H. Lee, S-J. Kim, S-H. Kim. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: A computational knee model. Bone Joint Res 2017;6:31–42. DOI: 10.1302/2046-3758.61.BJR-2016-0184.R1


Bone & Joint Research
Vol. 5, Issue 6 | Pages 247 - 252
1 Jun 2016
Tabuchi K Soejima T Murakami H Noguchi K Shiba N Nagata K

Objectives. The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods. Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results. At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions. Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10.1302/2046-3758.56.2000585


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims

The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA).

Methods

Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.


Bone & Joint Open
Vol. 2, Issue 8 | Pages 638 - 645
1 Aug 2021
Garner AJ Edwards TC Liddle AD Jones GG Cobb JP

Aims

Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics.

Methods

Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 593 - 600
1 Sep 2020
Lee J Koh Y Kim PS Kang KW Kwak YH Kang K

Aims

Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA.

Methods

Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition.


Bone & Joint Research
Vol. 7, Issue 9 | Pages 541 - 547
1 Sep 2018
Eijkenboom JFA Waarsing JH Oei EHG Bierma-Zeinstra SMA van Middelkoop M

Objectives

It has been hypothesized that patellofemoral pain, a common knee condition in adolescents and young adults, may be a precursor of degenerative joint changes and may ultimately lead to patellofemoral osteoarthritis. Since both conditions share several mechanical disease characteristics, such as altered contact area between the femur and patella and increased joint stress, we investigated whether these conditions share similar and different shape characteristics of the patella compared with normal controls.

Methods

This cross-sectional study compared three different study populations: 32 patellofemoral pain subjects (mean age, 32 years (22 to 45); 72% female); 56 isolated radiological patellofemoral osteoarthritis subjects (mean age, 54 years (44 to 58); 89% female); and 80 healthy control subjects (mean age, 52 years (44 to 58); 74% female). Measurements included questionnaires, and lateral and skyline radiographs of the knee. Two separate 30-point 2D statistical shape models of the patella were created from the lateral and skyline radiographs. A general linear model was used to test for differences in standardized shape modes (a specific shape variant of the patella) between patellofemoral osteoarthritis, patellofemoral pain, and controls, using Bonferroni correction and adjustment for body mass index and gender.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 11 - 15
1 Oct 2016
Konan S Haddad FS

Aims

Medial unicompartmental knee arthroplasty (UKA) is associated with successful outcomes in carefully selected patient cohorts. We hypothesised that severity and location of patellofemoral cartilage lesions significantly influences functional outcome after Oxford medial compartmental knee arthroplasty.

Patients and Methods

We reviewed 100 consecutive UKAs at minimum eight-year follow-up (96 to 132). A single surgeon performed all procedures. Patients were selected based on clinical and plain radiographic assessment. All patients had end-stage medial compartment osteoarthritis (OA) with sparing of the lateral compartment and intact anterior cruciate ligaments. None of the patients had end-stage patellofemoral OA, but patients with anterior knee pain or partial thickness chondral loss were not excluded. There were 57 male and 43 female patients. The mean age at surgery was 69 years (41 to 82). At surgery the joint was carefully inspected for patellofemoral chondral loss and this was documented based on severity of cartilage loss (0 to 4 Outerbridge grading) and topographic location (medial, lateral, central, and superior or inferior). Functional scores collected included Oxford Knee Score (OKS), patient satisfaction scale and University College Hospital (UCH) knee score. Intraclass correlation was used to compare chondral damage to outcomes.


Objectives

Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA.

Methods

We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 294 - 300
1 Jul 2016
Nishioka H Nakamura E Hirose J Okamoto N Yamabe S Mizuta H

Objectives

The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping.

Methods

Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 34 - 40
1 Oct 2016
Emerson RH Alnachoukati O Barrington J Ennin K

Aims

Approved by the Food and Drug Administration in 2004, the Phase III Oxford Medial Partial Knee is used to treat anteromedial osteoarthritis (AMOA) in patients with an intact anterior cruciate ligament. This unicompartmental knee arthroplasty (UKA) is relatively new in the United States, and therefore long-term American results are lacking.

Patients and Methods

This is a single surgeon, retrospective study based on prospectively collected data, analysing a consecutive series of primary UKAs using the Phase III mobile-bearing Oxford Knee and Phase III instrumentation.

Between July 2004 and December 2006, the senior author (RHE) carried out a medial UKA in 173 patients (213 knees) for anteromedial osteoarthritis or avascular necrosis (AVN).

A total of 95 patients were men and 78 were women. Their mean age at surgery was 67 years (38 to 89) and mean body mass index 29.87 kg/m2 (17 to 62).

The mean follow-up was ten years (4 to 11).


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 28 - 33
1 Oct 2016
Lum ZC Lombardi AV Hurst JM Morris MJ Adams JB Berend KR

Aims

Since redesign of the Oxford phase III mobile-bearing unicompartmental knee arthroplasty (UKA) femoral component to a twin-peg design, there has not been a direct comparison to total knee arthroplasty (TKA). Thus, we explored differences between the two cohorts.

Patients and Methods

A total of 168 patients (201 knees) underwent medial UKA with the Oxford Partial Knee Twin-Peg. These patients were compared with a randomly selected group of 177 patients (189 knees) with primary Vanguard TKA. Patient demographics, Knee Society (KS) scores and range of movement (ROM) were compared between the two cohorts. Additionally, revision, re-operation and manipulation under anaesthesia rates were analysed.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 41 - 47
1 Oct 2016
Lisowski LA Meijer LI Bekerom MPJVD Pilot P Lisowski AE

Aims

The interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has increased rapidly but the long-term follow-up of the Oxford UKAs has yet to be analysed in non-designer centres. We have examined our ten- to 15-year clinical and radiological follow-up data for the Oxford Phase III UKAs.

Patients and Methods

Between January 1999 and January 2005 a total of 138 consecutive Oxford Phase III arthroplasties were performed by a single surgeon in 129 patients for medial compartment osteoarthritis (71 right and 67 left knees, mean age 72.0 years (47 to 91), mean body mass index 28.2 (20.7 to 52.2)). Both clinical data and radiographs were prospectively recorded and obtained at intervals. Of the 129 patients, 32 patients (32 knees) died, ten patients (12 knees) were not able to take part in the final clinical and radiological assessment due to physical and mental conditions, but via telephone interview it was confirmed that none of these ten patients (12 knees) had a revision of the knee arthroplasty. One patient (two knees) was lost to follow-up.