Arthroplasty has been shown to generate the most waste among all orthopaedic subspecialties, and it is estimated that hip and knee arthroplasty generate in excess of three million kg of waste annually in the UK. Infectious waste generates up to ten times more CO2 compared with recycled waste, and previous studies have shown that over 90% of waste in the infectious stream is misallocated. We assessed the effect of real-time waste segregation by an unscrubbed team member on waste generation in knee and hip arthroplasty cases, and compared this with a simple educational intervention during the ‘team brief’ at the start of the operating list across two sites. Waste was categorized into five categories: infectious, general, recycling, sharps, and linens. Each category was weighed at the end of each case using a digital weighing scale. At Site A (a tertiary orthopaedic hospital), pre-intervention data were collected for 16 total knee arthroplasy (TKA) and 15 total hip arthroplasty (THA) cases. Subsequently, for ten TKA and ten THA cases, an unscrubbed team member actively segregated waste in real-time into the correct streams. At Site B (a district general hospital), both pre- and post-intervention groups included ten TKA and ten THA cases. The intervention included reminding staff during the ‘team brief’ to segregate waste correctly.Aims
Methods
The extended wait that most patients are now experiencing for hip and knee arthroplasty has raised questions about whether reliance on waiting time as the primary driver for prioritization is ethical, and if other additional factors should be included in determining surgical priority. Our Prioritization of THose aWaiting hip and knee ArthroplastY (PATHWAY) project will explore which perioperative factors are important to consider when prioritizing those on the waiting list for hip and knee arthroplasty, and how these factors should be weighted. The final product will include a weighted benefit score that can be used to aid in surgical prioritization for those awaiting elective primary hip and knee arthroplasty. There will be two linked work packages focusing on opinion from key stakeholders (patients and surgeons). First, an online modified Delphi process to determine a consensus set of factors that should be involved in patient prioritization. This will be performed using standard Delphi methodology consisting of multiple rounds where following initial individual rating there is feedback, discussion, and further recommendations undertaken towards eventual consensus. The second stage will then consist of a Discrete Choice Experiment (DCE) to allow for priority setting of the factors derived from the Delphi through elicitation of weighted benefit scores. The DCE consists of several choice tasks designed to elicit stakeholder preference regarding included attributes (factors).Aims
Methods
Tranexamic acid (TXA) is now commonly used in major surgical operations including orthopaedics. The TRAC-24 randomized control trial (RCT) aimed to assess if an additional 24 hours of TXA postoperatively in primary total hip (THA) and total knee arthroplasty (TKA) reduced blood loss. Contrary to other orthopaedic studies to date, this trial included high-risk patients. This paper presents the results of a cost analysis undertaken alongside this RCT. TRAC-24 was a prospective RCT on patients undergoing TKA and THA. Three groups were included: Group 1 received 1 g intravenous (IV) TXA perioperatively and an additional 24-hour postoperative oral regime, Group 2 received only the perioperative dose, and Group 3 did not receive TXA. Cost analysis was performed out to day 90.Aims
Methods
Objectives. Nylon sutures and skin staples are used commonly in total knee arthroplasty (TKA) surgical wound closure. However, there is no study that compares the wound healing
Synovial fluid white blood cell (WBC) count and percentage of polymorphonuclear cells (%PMN) are elevated at periprosthetic joint infection (PJI). Leucocytes produce different interleukins (IL), including IL-6, so we hypothesized that synovial fluid IL-6 could be a more accurate predictor of PJI than synovial fluid WBC count and %PMN. The main aim of our study was to compare the predictive performance of all three diagnostic tests in the detection of PJI. Patients undergoing total hip or knee revision surgery were included. In the perioperative assessment phase, synovial fluid WBC count, %PMN, and IL-6 concentration were measured. Patients were labeled as positive or negative according to the predefined cut-off values for IL-6 and WBC count with %PMN. Intraoperative samples for microbiological and histopathological analysis were obtained. PJI was defined as the presence of sinus tract, inflammation in histopathological samples, and growth of the same microorganism in a minimum of two or more samples out of at least four taken.Aims
Methods
Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits. A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein).Aims
Methods
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.Objectives
Methods