Aims. While cementless fixation offers potential advantages over cemented fixation, such as a shorter operating time, concerns linger over its higher cost and increased risk of periprosthetic fractures. If the risk of fracture can be forecasted, it would aid the shared decision-making process related to cementless stems. Our study aimed to develop and validate predictive models of periprosthetic femoral fracture (PPFF) necessitating revision and reoperation after elective total hip arthroplasty (THA). Methods. We included 154,519 primary elective THAs from the Swedish Arthroplasty Register (SAR), encompassing 21 patient-, surgical-, and implant-specific features, for model derivation and validation in predicting 30-day, 60-day, 90-day, and one-year revision and reoperation due to PPFF. Model performance was tested using the area under the curve (AUC), and feature importance was identified in the best-performing algorithm. Results. The Lasso regression excelled in predicting 30-day revisions (area under the receiver operating characteristic curve (AUC) = 0.85), while the Gradient Boosting Machine (GBM) model outperformed other models by a slight margin for all remaining endpoints (AUC range: 0.79 to 0.86).
No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.Aims
Methods
The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS). A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.Aims
Methods